

L FACULTY OF ENGINEERING SCIENCE COSIC

Threshold Structure-Preserving Signatures: Done and Ongoing Projects

Mahdi Sedaghat

June 4 (Zurich, Switzerland)

Threshold Structure-Preserving Signatures

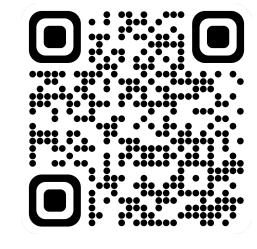
Elizabeth Crites¹, Markulf Kohlweiss^{1,2}, Bart Preneel³, Mahdi Sedaghat³, and Daniel Slamanig⁴

¹ University of Edinburgh, Edinburgh, UK ecrites@ed.ac.uk, mkohlwei@inf.ed.ac.uk ² IOG ³ COSIC, KU Leuven, Leuven, Belgium ssedagha@esat.kuleuven.be, bart.preneel@esat.kuleuven.be ⁴ AIT Austrian Institute of Technology, Vienna, Austria daniel.slamanig@ait.ac.at

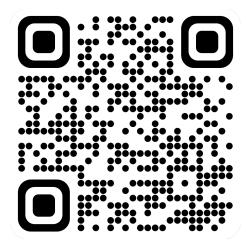
Threshold Structure-Preserving Signatures: Strong and Adaptive Security under Standard Assumptions

Aikaterini Mitrokotsa¹, Sayantan Mukherjee², Mahdi Sedaghat³, Daniel Slamanig⁴, and Jenit Tomy¹

 ¹ University of St. Gallen, St. Gallen, Switzerland first.last@unisg.ch
 ² Indian Institute of Technology, Jammu, India csayantan.mukherjee@gmail.com
 ³ COSIC, KU Leuven, Leuven, Belgium ssedagha@esat.kuleuven.be
 ⁴ Research Institute CODE, Universität der Bundeswehr München, München, Germany daniel.slamanig@unibw.de



eprint/2024/445



eprint/2022/839

Outline:

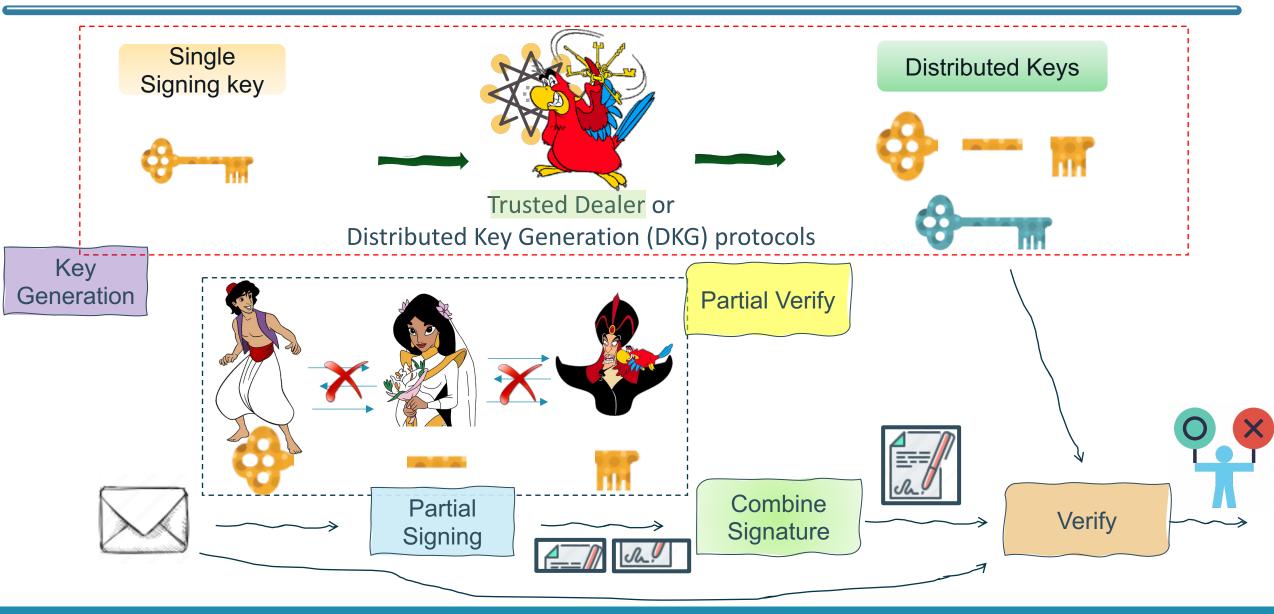
Threshold Structure-Preserving Signatures

Threshold Structure Preserving Signatures

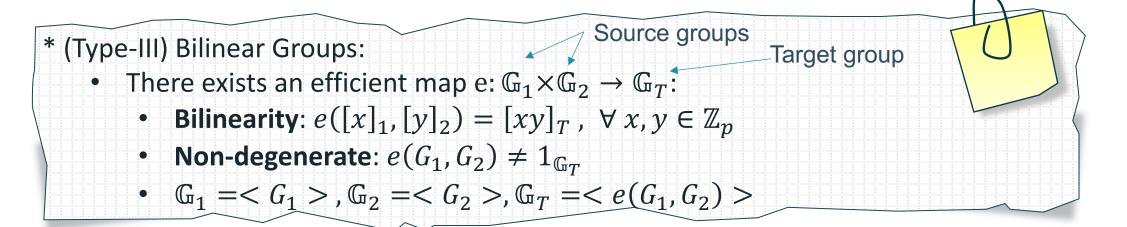
Threshold Signatures

Structure-Preserving Signatures

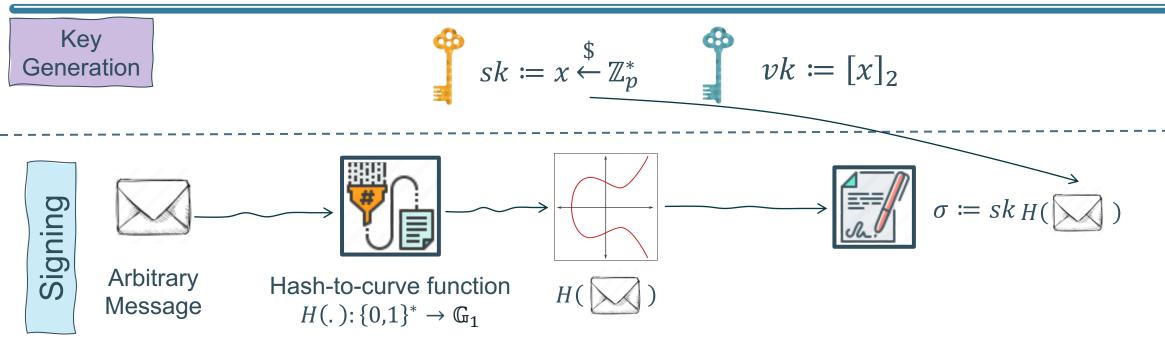
(Non-Interactive) Threshold Signatures: To Tolerate Some Fraction of Corrupt Signers



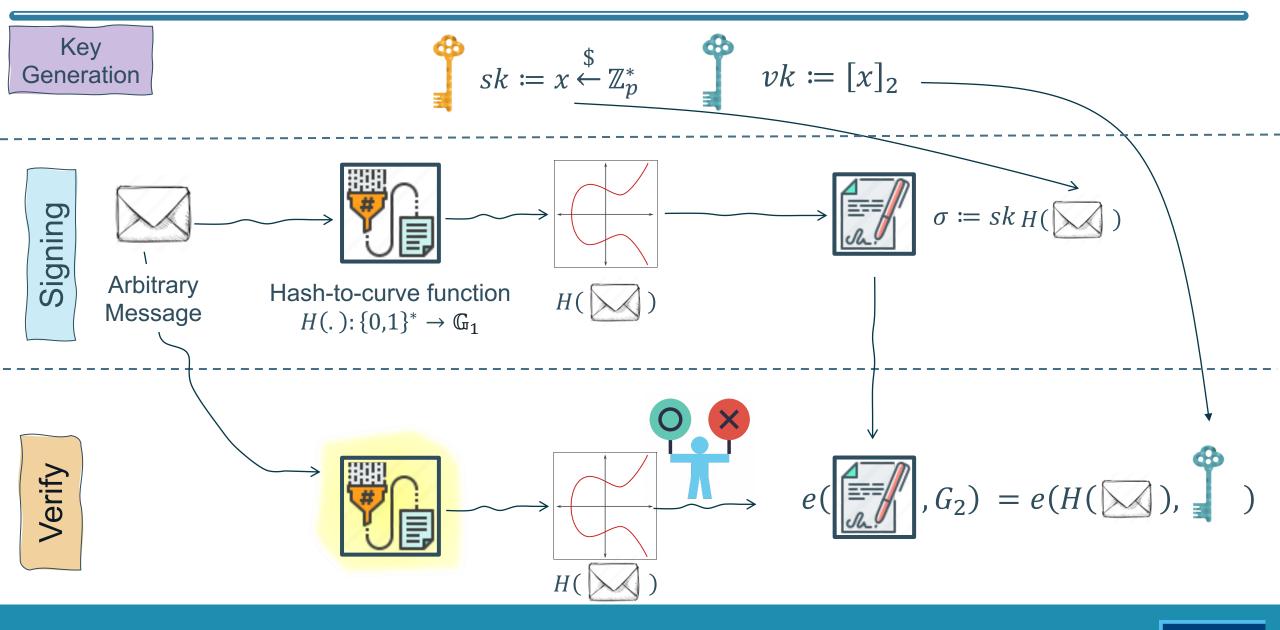
BLS signature [BLS04]: A simple not one-time NI-TS over bilinear groups*



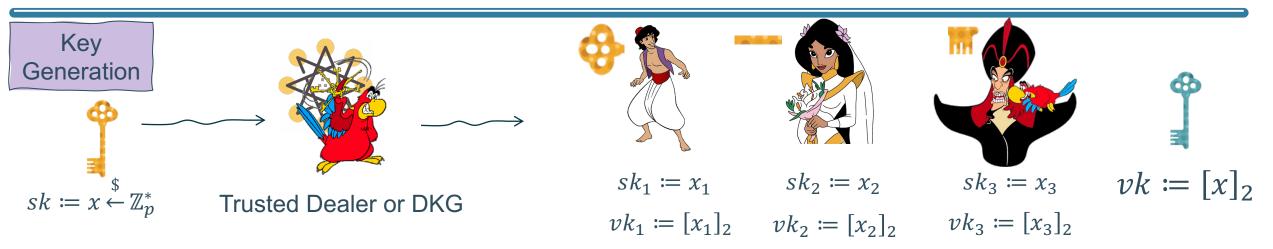
BLS signature [BLS04]: A simple not one-time NI-TS



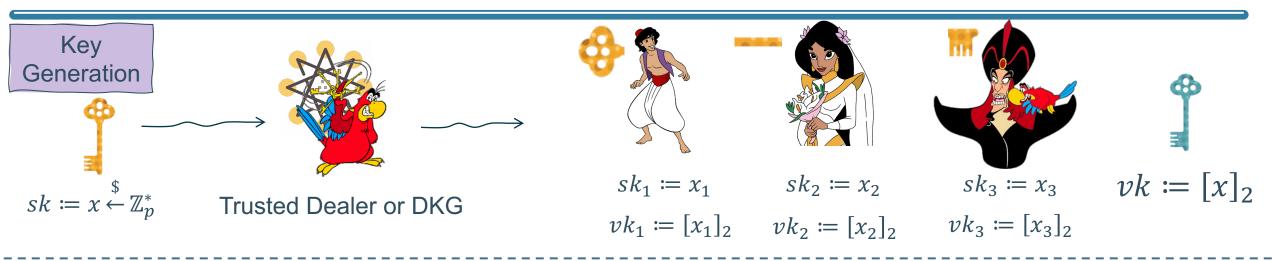
BLS signature [BLS04]: A simple not one-time NI-TS

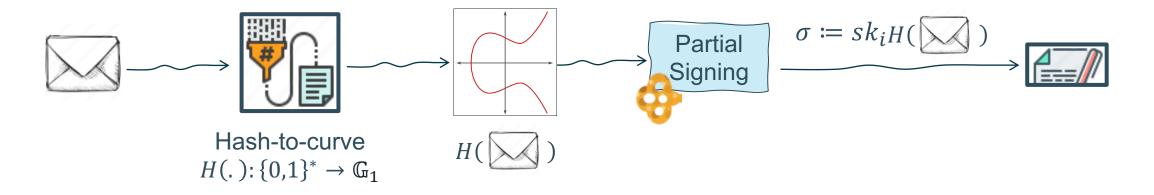


Threshold BLS signature [Bol03]: A simple example of NI-TS

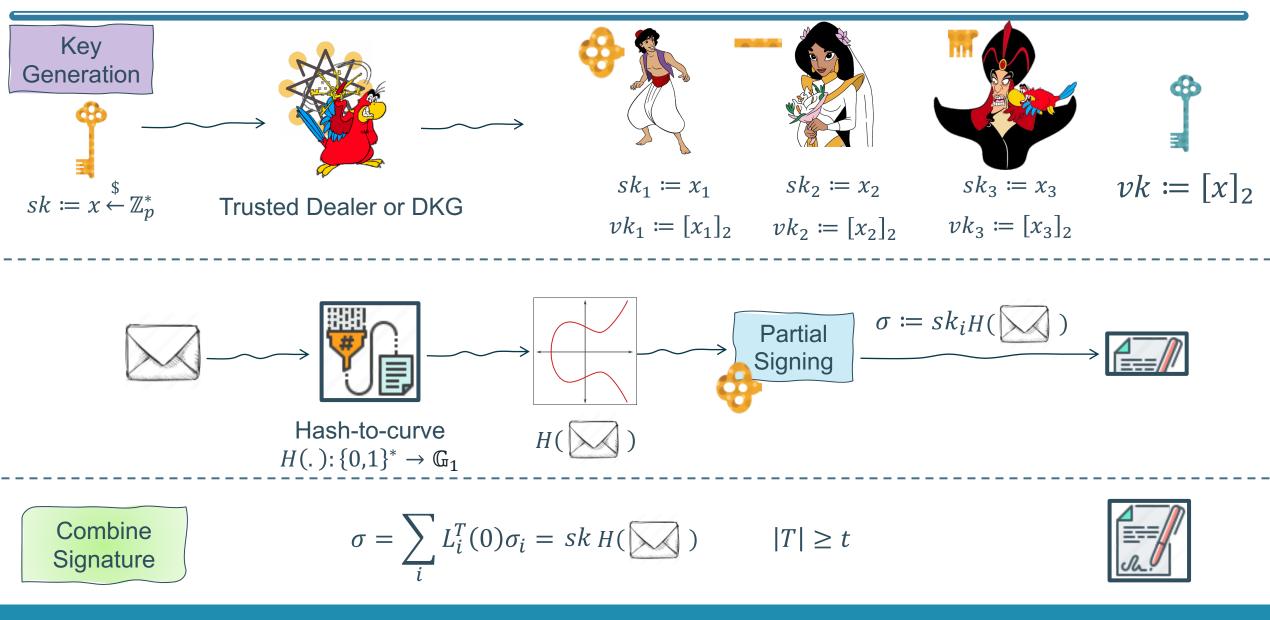


Threshold BLS signature [Bol03]: A simple example of NI-TS

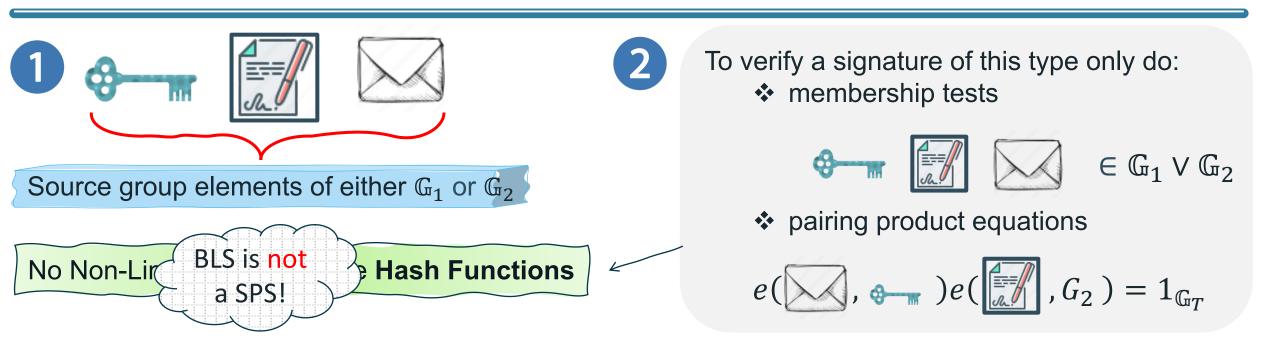




Threshold BLS signature [Bol03]: A simple example of NI-TS



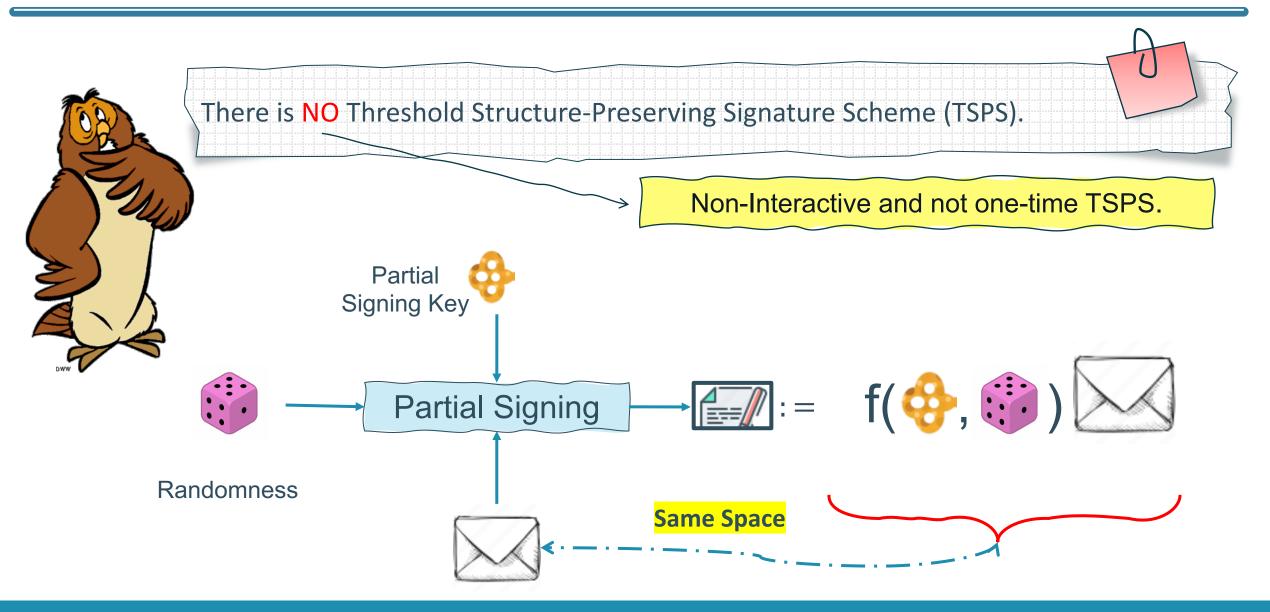
Structure-Preserving Signatures [AFG+10]: To Preserve an Algebraic Structure Over Bilinear Groups



A general framework for efficient generic constructions of cryptographic primitives over bilinear groups.

- 1. Groth-Sahai [GS08] proof system friendly
 - Straight-line extraction.
 - Standard Model.
 - Applications: group signatures, blind signatures, etc.
- 2. Enabling Modular Design in complex systems
 - Makes easy to combine building blocks.

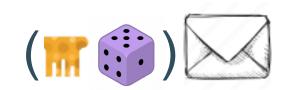
Our Main Objective and Technical Challenges:



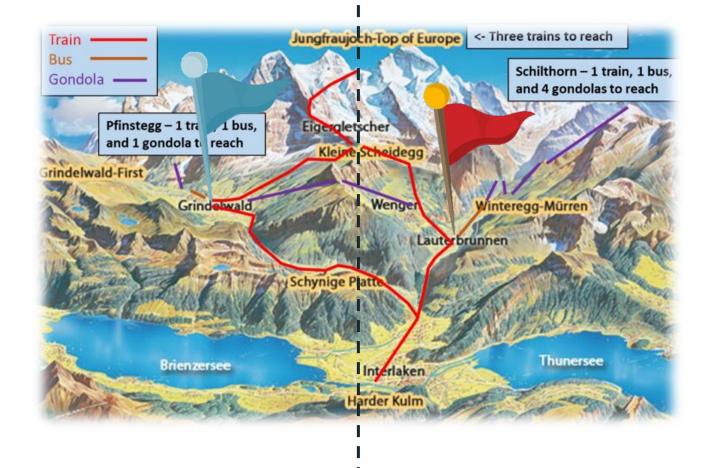
Technical Challenges: Forbidden Operations in Partial Signatures

An SPS is said threshold friendly, if it avoids all these non-linear operations.

Randomness or secret share inverse:



Treasure map: To look for a Non-Interactive TSPS



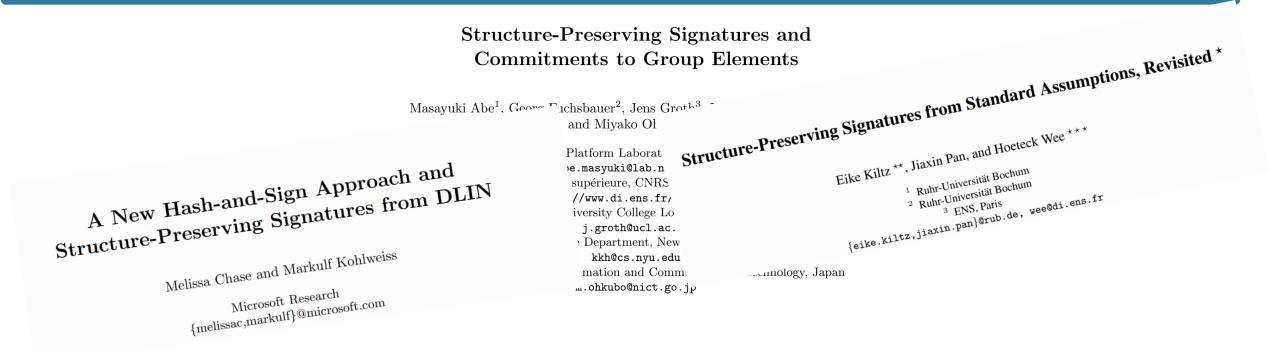
Threshold Signatures

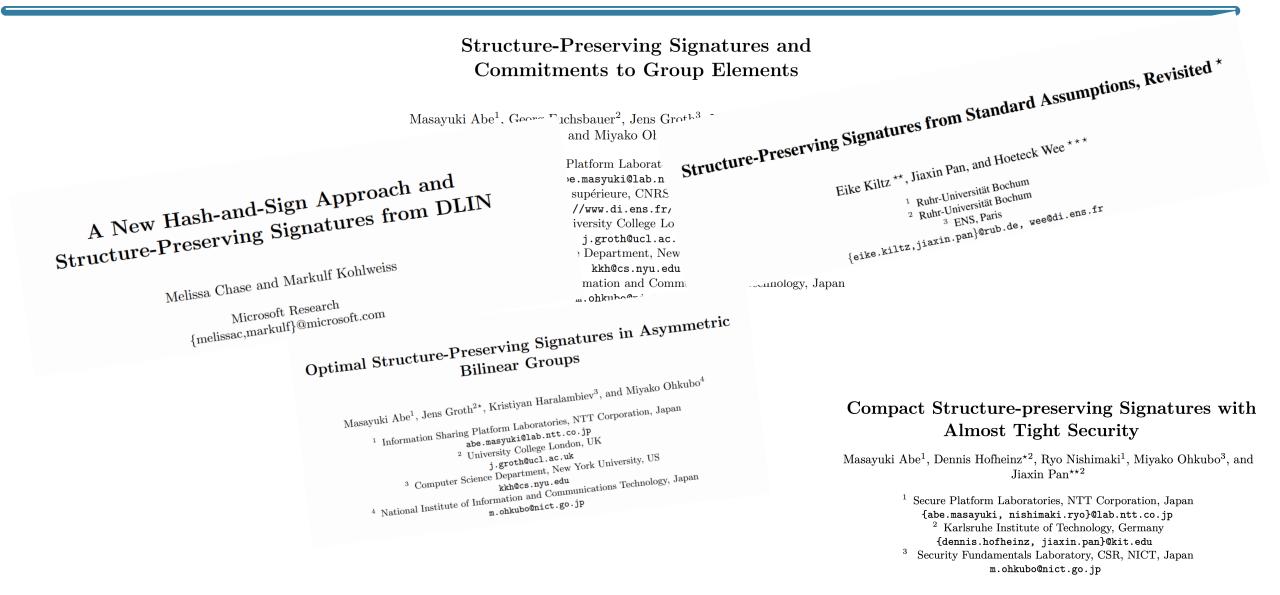
Structure-Preserving Signatures

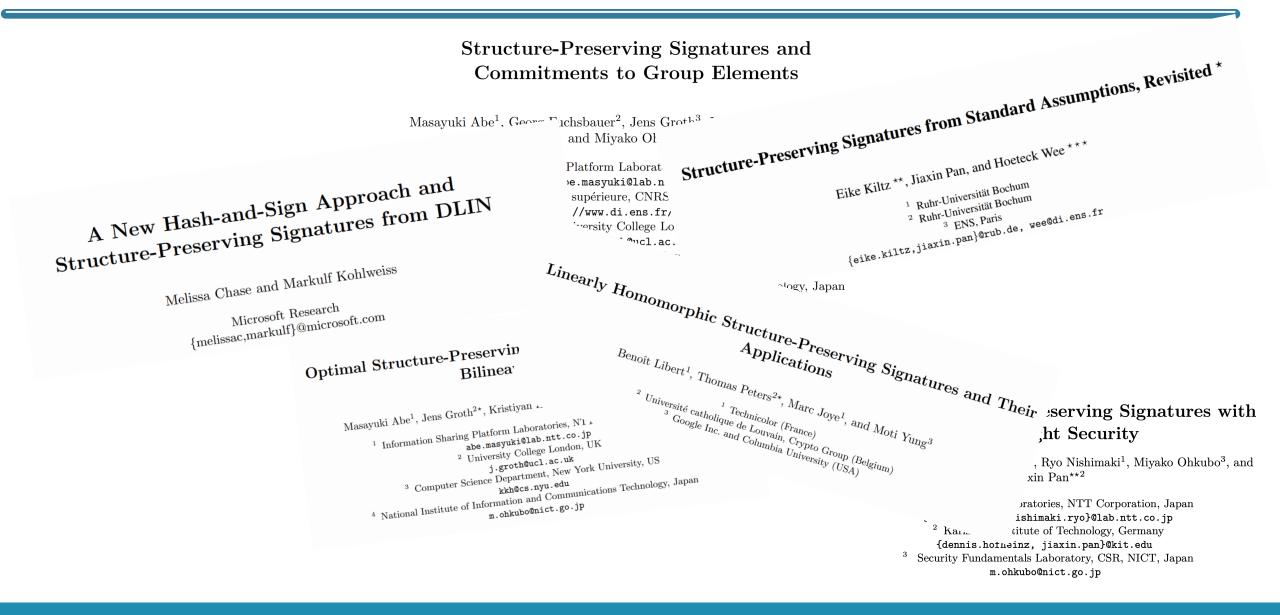
Structure-Preserving Signatures and Commitments to Group Elements

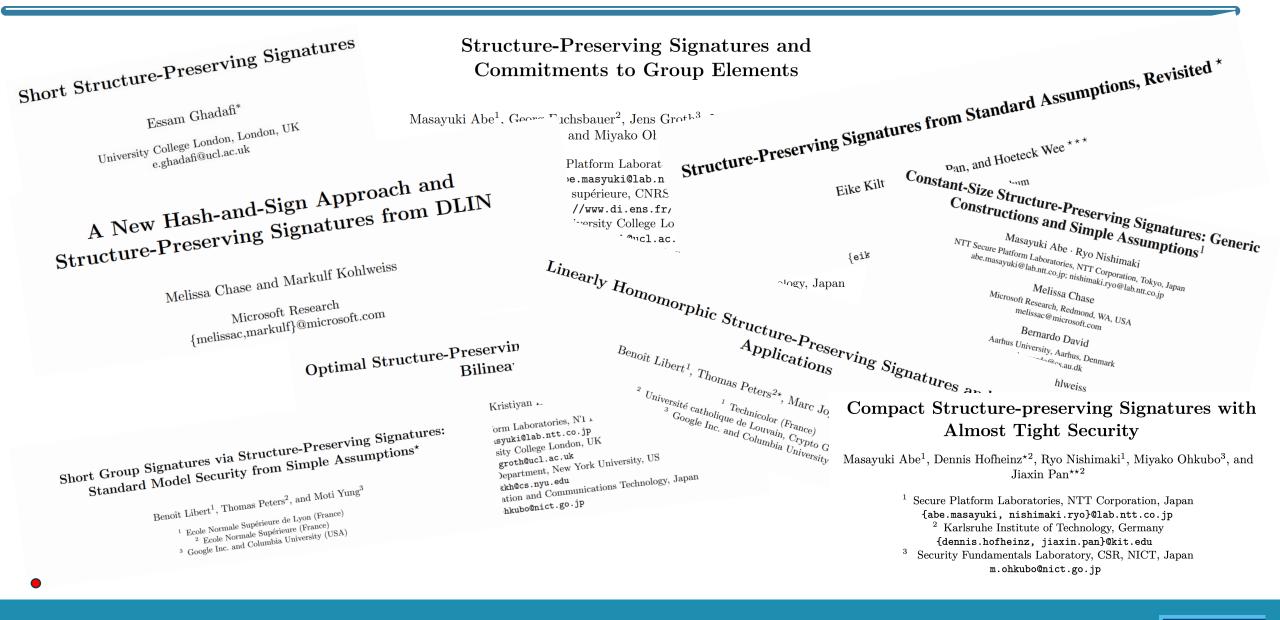
Masayuki Abe¹, Georg Fuchsbauer², Jens Groth³, Kristiyan Haralambiev^{4,*}, and Miyako Ohkubo^{5,*}

¹ Information Sharing Platform Laboratories, NTT Corporation, Japan abe.masyuki@lab.ntt.co.jp
² École normale supérieure, CNRS-INRIA, Paris, France http://www.di.ens.fr/~fuchsbau
³ University College London, UK j.groth@ucl.ac.uk
⁴ Computer Science Department, New York University, USA kkh@cs.nyu.edu
⁵ National Institute of Information and Communications Technology, Japan m.ohkubo@nict.go.jp

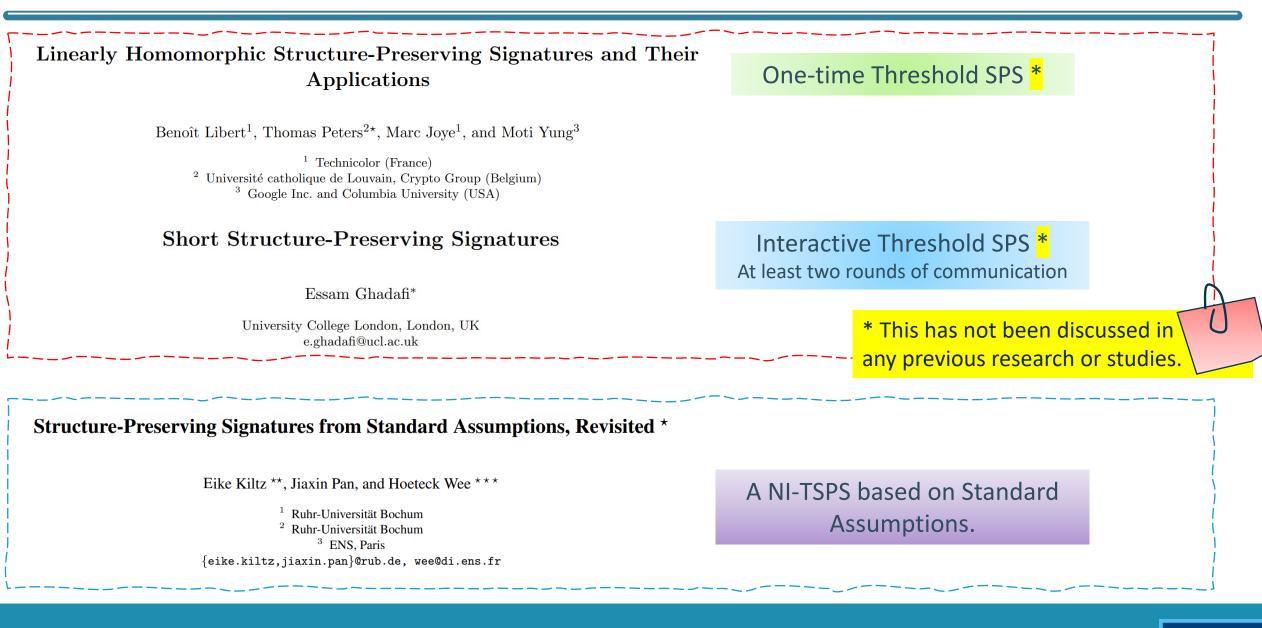








Structure-Preserving Signatures: Some Candidates

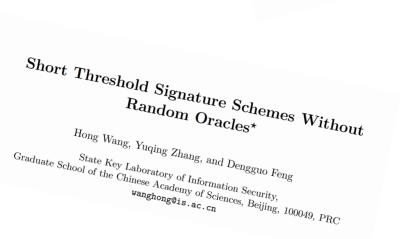


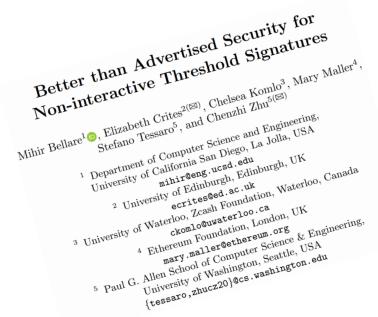
Threshold Signatures, Multisignatures and Blind Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme Dept. of Computer Science & Engineering, University of California at San Diego, 0500 Cilman Driva La Lolla CA 02003 USA http://www-cse.ucsd.edu/users/aboldyre

Practical Threshold Signatures

Victor Shoup

IBM Zürich Research Lab Säumerstr. 4, 8803 Rüschlikon, Switzerland sho@zurich.ibm.com





Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers

Alberto Sonnino^{*†}, Mustafa Al-Bassam^{*†}, Shehar Bano^{*†}, Sarah Meiklejohn^{*} and George Danezis^{*†} * University College London, United Kingdom [†] chainspace.io

Short Randomizable Signatures

David Pointcheval¹ and Olivier Sanders^{1,2}

École normale supérieure, CNRS & INRIA, Paris, France
 ² Orange Labs, Applied Crypto Group, Caen, France

Scalar Messages

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers

Alberto Sonnino^{*†}, Mustafa Al-Bassam^{*†}, Shehar Bano^{*†}, Sarah Meiklejohn^{*} and George Danezis^{*†} * University College London, United Kingdom [†] chainspace.io

Short Randomizable Signatures

David Pointcheval¹ and Olivier Sanders^{1,2}

¹ École normale supérieure, CNRS & INRIA, Paris, France
 ² Orange Labs, Applied Crypto Group, Caen, France

Scalar Messages

Short Structure-Preserving Signatures

Essam Ghadafi*

University College London, London, UK e.ghadafi@ucl.ac.uk

Interactive TSPS

Finalists for the Initial Work: To Build a Threshold-Friendly SPS

Coconut: Threshold Issuance Selective Disclosure Credentials with Applications to Distributed Ledgers

Alberto Sonnino^{*†}, Mustafa Al-Bassam^{*†}, Shehar Bano^{*†}, Sarah Meiklejohn^{*} and George Danezis^{*†} * University College London, United Kingdom [†] chainspace.io

Short Randomizable Signatures

David Pointcheval¹ and Olivier Sanders^{1,2}

¹ École normale supérieure, CNRS & INRIA, Paris, France
 ² Orange Labs, Applied Crypto Group, Caen, France

Scalar Messages

Short Structure-Preserving Signatures

Essam Ghadafi*

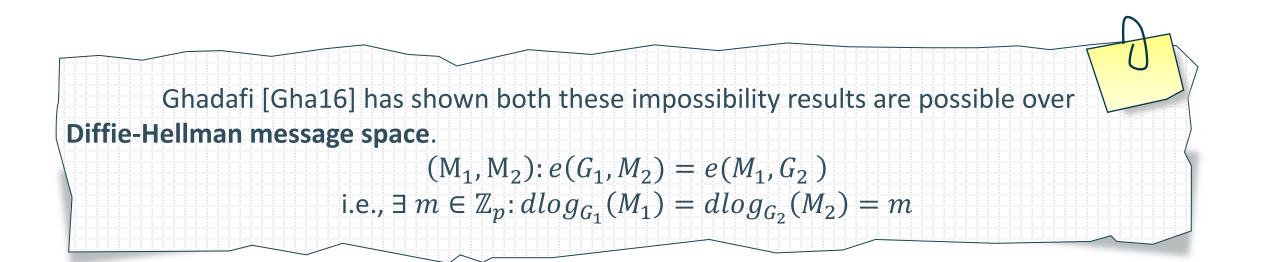
University College London, London, UK e.ghadafi@ucl.ac.uk

Interactive TSPS

SPS Impossibility Results [AGHO11]:

No unilateral SPS (respectively TSPS) exists!*

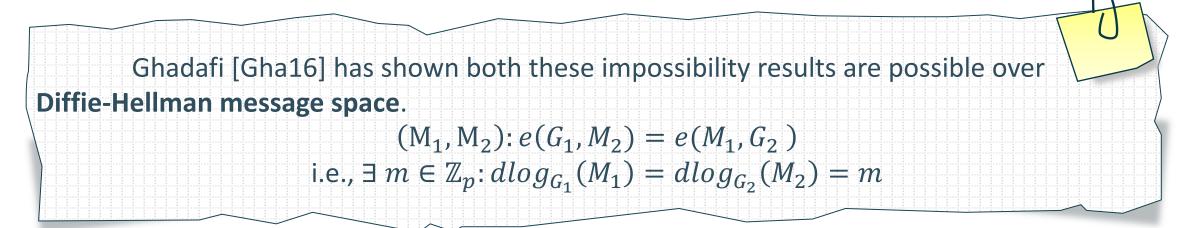
Both message and Signature components belong to the same source group.



No unilateral SPS (respectively TSPS) exists!*

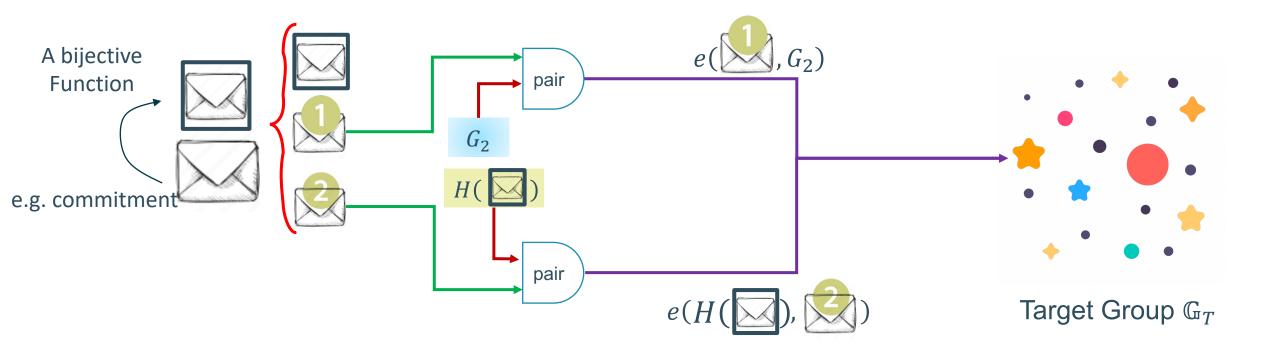
> Both message and Signature components belong to the same source group.

No SPS with fewer than 2 pairing product equations to be verified exists!

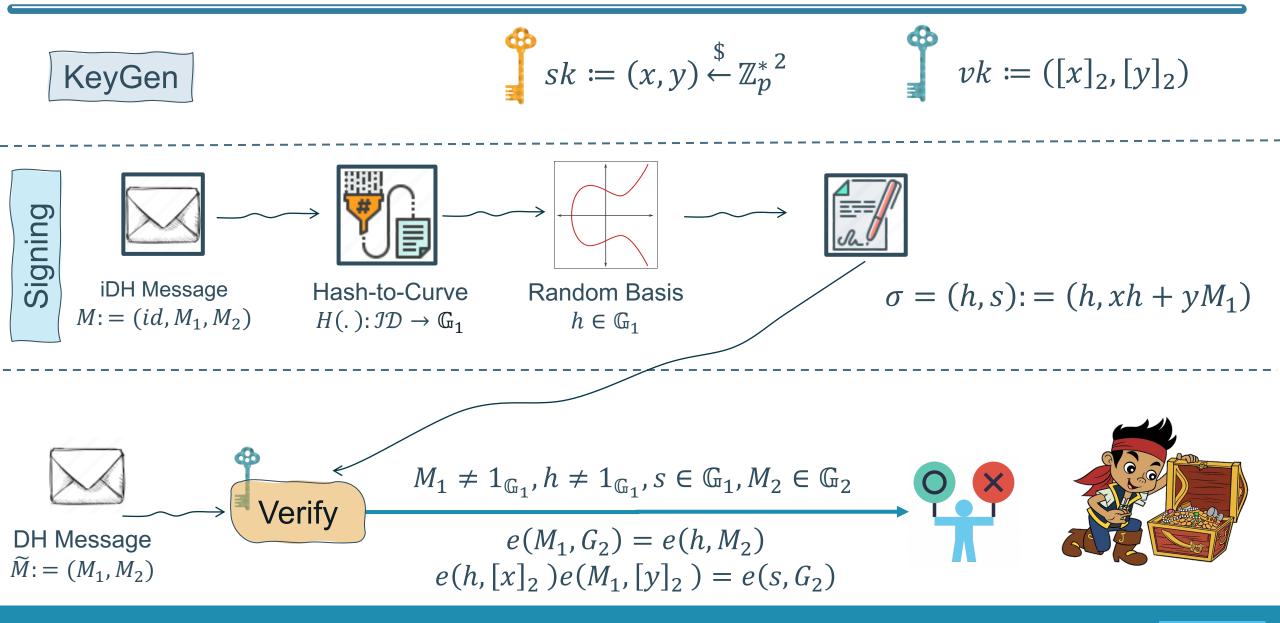


Indexed Diffie-Hellman Message Spaces:

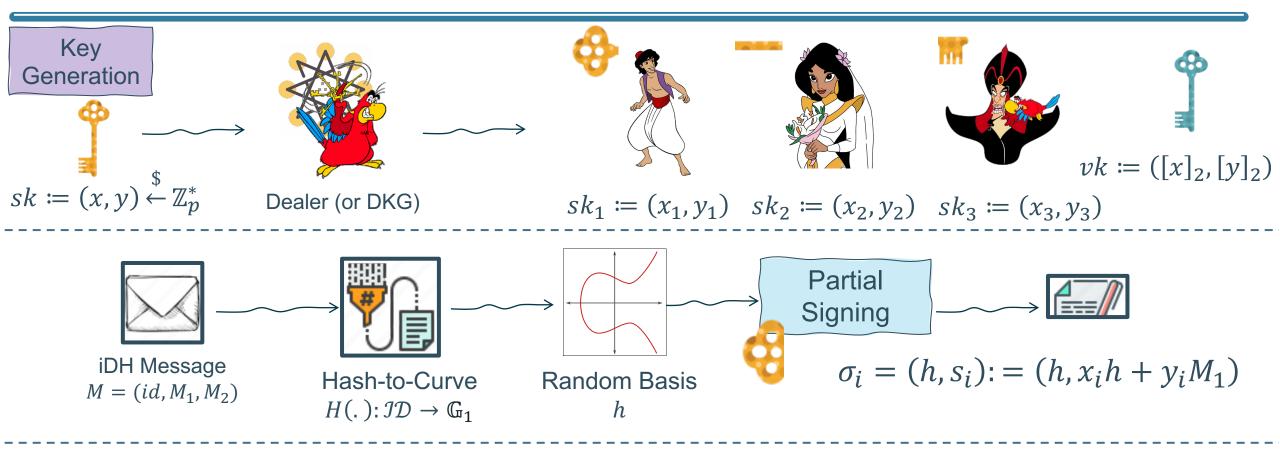
Indexed Diffie-Hellman (iDH) message spaces: $(id, M_1, M_2): e(H(id), M_2) = e(M_1, G_2)$ i.e., $\exists m \in \mathbb{Z}_p: dlog_{H(id)}(M_1) = dlog_{G_2}(M_2) = m$



Our proposed message-indexed SPS (iSPS): A Threshold-Friendly SPS



Our proposed TSPS: The first TSPS [CKPSS23]



Combine Signature

$$\sigma = \left(h, \sum_{i \in T} L_i^T(0)s_i\right) = (h, xh + yM_1), \forall |T| \ge t$$

Security Notions: EUF-CMA

 $G_{\mathrm{DS},\mathcal{A}}^{\mathrm{CMA}}(\kappa)$

 $pp \leftarrow Setup(1^{\kappa})$ $(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1,n]}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \leftarrow \mathsf{KeyGen}(\mathsf{pp}, n, t)$ $([\mathbf{m}^*], \varSigma^*, \mathsf{st}_1) \leftarrow \mathcal{A}^{\mathcal{O}^{\mathsf{PSign}}(.)} (\mathsf{st}_0, \mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1, n]})$ | return (Verify(pp,vk, [m*], $\Sigma^*) \land |$ CS $| < t \land [$ m*] is fresh $(S_1([\mathbf{m}^*]) = \emptyset \mid \lor \mid |S_1([\mathbf{m}^*])| < t - |\mathsf{CS}|)$ $\mathcal{O}^{\mathsf{PSign}}(i, [\mathbf{m}])$: Assert $([\mathbf{m}] \in \mathcal{M} \land i \in \mathsf{HS})$ $\Sigma_i \leftarrow \mathsf{ParSign}(\mathsf{pp},\mathsf{sk}_i,[\mathbf{m}])$ $S_1([\mathbf{m}]) \leftarrow S_1([\mathbf{m}]) \cup \{i\}$ return (Σ_i)

```
pp \leftarrow Setup(1^{\kappa})
(n, t, \mathsf{CS}, \mathsf{st}_0) \leftarrow \mathcal{A}(\mathsf{pp})
\mathsf{HS} := [1, n] \setminus \mathsf{CS}
(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1,n]}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \leftarrow \mathsf{KeyGen}(\mathsf{pp}, n, t)
([\mathbf{m}^*], \varSigma^*, \mathsf{st}_1) \leftarrow \mathcal{A}^{\mathcal{O}^{\mathsf{PSign}}(.), \bigcup^{\mathsf{Corrupt}}(.)}(\mathsf{st}_0, \mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1,n]})
\mathbf{return} \quad \left( \mathsf{Verify}(\mathsf{pp},\mathsf{vk},[\mathbf{m}^*],\varSigma^*) \land |\mathsf{CS}| < t \land \right.
                   \left( S_1([\mathbf{m}^*]) = \emptyset \right) \vee \left| S_1([\mathbf{m}^*]) | < t - |\mathsf{CS}| \right) 
  \mathcal{O}^{\mathsf{PSign}}(i, [\mathbf{m}]):
   Assert ([\mathbf{m}] \in \mathcal{M} \land i \in \mathsf{HS}) \mid | \text{if } k \in \mathsf{CS} :
   \Sigma_i \leftarrow \mathsf{ParSign}(\mathsf{pp},\mathsf{sk}_i,[\mathbf{m}])
   if \Sigma_i \neq \bot:
            S_1([\mathbf{m}]) \leftarrow S_1([\mathbf{m}]) \cup \{i\}
   return (\Sigma_i)
```

```
pp \leftarrow Setup(1^{\kappa})
(n, t, \mathsf{CS}, \mathsf{st}_0) \leftarrow \mathcal{A}(\mathsf{pp})
\mathsf{HS} := [1, n] \setminus \mathsf{CS}
(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1,n]}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \leftarrow \mathsf{KeyGen}(\mathsf{pp}, n, t)
([\mathbf{m}^*], \varSigma^*, \mathsf{st}_1) \leftarrow \mathcal{A}^{\mathcal{O}^{\mathsf{PSign}}(.), \bigcup^{\mathsf{Corrupt}}(.)}(\mathsf{st}_0, \mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1,n]})
\mathbf{return} \quad \left( \mathsf{Verify}(\mathsf{pp},\mathsf{vk},[\mathbf{m}^*],\varSigma^*) \land |\mathsf{CS}| < t \land \right.
                    \left( \left| S_1([\mathbf{m}^*]) = \emptyset \right| \lor \left| \left| S_1([\mathbf{m}^*]) \right| < t - |\mathsf{CS}| \right| \right) 
  \mathcal{O}^{\mathsf{PSign}}(i, [\mathbf{m}]):
   Assert ([\mathbf{m}] \in \mathcal{M} \land i \in \mathsf{HS})
   \Sigma_i \leftarrow \mathsf{ParSign}(\mathsf{pp},\mathsf{sk}_i,[\mathbf{m}])
   if \Sigma_i \neq \bot:
            S_1([\mathbf{m}]) \leftarrow S_1([\mathbf{m}]) \cup \{i\}
   return (\Sigma_i)
```

 $G_{\mathsf{TS},\mathcal{A}}^{\mathsf{TS},\mathsf{UF}^{-0}}(\kappa) \mid G_{\mathsf{TS},\mathcal{A}}^{\mathsf{TS},\mathsf{UF}^{-1}}(\kappa) \mid G_{\mathsf{TS},\mathcal{A}}^{\mathsf{adp},\mathsf{TS},\mathsf{UF}^{-0}}(\kappa) \mid , \quad G_{\mathsf{TS},\mathcal{A}}^{\mathsf{adp},\mathsf{TS},\mathsf{UF}^{-1}}(\kappa)$ $pp \leftarrow Setup(1^{\kappa})$ $(n, t, \mathsf{CS}, \mathsf{st}_0) \leftarrow \mathcal{A}(\mathsf{pp})$ $\mathsf{HS} := [1, n] \setminus \mathsf{CS}$ $(\mathsf{vk}, \{\mathsf{sk}_i\}_{i \in [1,n]}, \{\mathsf{vk}_i\}_{i \in [1,n]}) \leftarrow \mathsf{KeyGen}(\mathsf{pp}, n, t)$ $([\mathbf{m}^*], \Sigma^*, \mathsf{st}_1) \leftarrow \mathcal{A}^{\mathcal{O}^{\mathsf{PSign}}(.), \mathcal{O}^{\mathsf{Corrupt}}(.)}(\mathsf{st}_0, \mathsf{vk}, \{\mathsf{sk}_i\}_{i \in \mathsf{CS}}, \{\mathsf{vk}_i\}_{i \in [1,n]})$ $\mathbf{return} \quad \left(\mathsf{Verify}(\mathsf{pp},\mathsf{vk},[\mathbf{m}^*],\varSigma^*) \land |\mathsf{CS}| < t \land \right.$ $\left(\begin{bmatrix} S_1([\mathbf{m}^*]) \\ \end{bmatrix} = \emptyset \right) \lor \left[|S_1([\mathbf{m}^*])| < t - |\mathsf{CS}| \right] \right)$ $\mathcal{O}^{\mathsf{Corrupt}}(k)$: $\mathcal{O}^{\mathsf{PSign}}(i, [\mathbf{m}])$: Assert $([\mathbf{m}] \in \mathcal{M} \land i \in \mathsf{HS}) \mid \mathbf{if} \ k \in \mathsf{CS}$: return \perp $\Sigma_i \leftarrow \mathsf{ParSign}(\mathsf{pp},\mathsf{sk}_i,[\mathbf{m}])$ else : $\mathsf{CS} \leftarrow \mathsf{CS} \cup \{k\}$ if $\Sigma_i \neq \bot$: $S_1([\mathbf{m}]) \leftarrow S_1([\mathbf{m}]) \cup \{i\}$ $\mathsf{HS} \leftarrow \mathsf{HS} \setminus \{k\}$ return (sk_k) return (Σ_i)

Supplementary Notations:

$$e([\mathbf{A}]_1, [\mathbf{B}]_2) = e\left(\begin{pmatrix} \alpha_{1,1}\mathsf{G}_1 & \cdots & \alpha_{1,n}\mathsf{G}_1\\ \alpha_{2,1}\mathsf{G}_1 & \cdots & \alpha_{2,n}\mathsf{G}_1\\ \vdots & \ddots & \vdots\\ \alpha_{m,1}\mathsf{G}_1 & \cdots & \alpha_{m,n}\mathsf{G}_1 \end{pmatrix}, \begin{pmatrix} \beta_{1,1}\mathsf{G}_2 & \cdots & \beta_{1,n}\mathsf{G}_2\\ \beta_{2,1}\mathsf{G}_2 & \cdots & \beta_{2,n}\mathsf{G}_2\\ \vdots & \ddots & \vdots\\ \beta_{m,1}\mathsf{G}_2 & \cdots & \beta_{m,n}\mathsf{G}_2 \end{pmatrix}\right) = [\mathbf{AB}]_{\mathbf{T}} \in \mathbb{G}_T$$

 $\mathcal{D}_{\ell,k}$ is called a matrix distribution. It produces matrices from $\mathbb{Z}_p^{\ell \times k}$ of full rank k. W.I.o.g. we let the first k rows of $A \leftarrow \mathcal{D}_{\ell,k}$ forms an invertible matrix. When $\ell = k + 1$, we refer to the distribution as \mathcal{D}_k

Example . As a simple example, let k = 3 and $\ell = 4$, meaning the matrix **A** has 4 rows and 3 columns. Given k = 3, $\ell = 4$, and a finite field of prime order p, a possible matrix **A** could be:

$$\mathbf{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 2 & 3 & 4 \end{pmatrix}$$

Matrix Assumptions:

Decisional Diffie-Hellman Assumption $Adv_{\mathcal{A}}^{\mathsf{DDH}}(\kappa) := |\varepsilon_1 - \varepsilon_0| \le \nu(\kappa)$ $\varepsilon_{\beta} := \Pr[\mathcal{A}([x], [y], [xy + \beta z]) = 1]$ $\mathcal{D}_{\ell,k}$ -Matrix Decisional Diffie-Hellman ($\mathcal{D}_{\ell,k}$ -MDDH) $\mathbf{A} \leftarrow \mathcal{D}_{\ell,k}, \mathbf{r} \leftarrow \mathcal{Z}_p^k, \mathbf{u} \leftarrow \mathcal{Z}_p^\ell$

 $Adv_{\mathcal{D}_{\ell,k},\mathbb{G}_{\zeta},\mathcal{A}}^{\mathsf{MDDH}}(\kappa) := |\varepsilon_{1} - \varepsilon_{0}| \le \nu(\kappa) \qquad \qquad \varepsilon_{\beta} := \Pr\left[\mathcal{A}(\mathcal{BG}, [\mathbf{A}]_{\zeta}, [\mathbf{Ar} + \beta \mathbf{u}]_{\zeta}) = 1\right]$

 $\mathcal{D}_{k}\text{-Kernel Matrix Diffie-Hellman} \quad (\mathcal{D}_{k}\text{-KerMDH}) \qquad \mathbf{A} \leftarrow \mathcal{D}_{k}$ $Adv_{\mathcal{D}_{k},\mathbb{G}_{\zeta},\mathcal{A}}^{\mathsf{KerMDH}}(\kappa) = \Pr\left[\mathbf{c} \in \mathsf{orth}(\mathbf{A}) \mid [\mathbf{c}]_{3-\zeta} \leftarrow \mathcal{A}(\mathcal{BG}, [\mathbf{A}]_{\zeta})\right)\right] \leq \nu(\kappa) \qquad \zeta = \{1,2\}$

Matrix Assumptions:

 $\mathcal{D}_{k}\text{-Kernel Matrix Diffie-Hellman} \quad (\mathcal{D}_{k}\text{-KerMDH}) \qquad \mathbf{A} \leftarrow \mathcal{D}_{k}$ $Adv_{\mathcal{D}_{k},\mathbb{G}_{\zeta},\mathcal{A}}^{\mathsf{KerMDH}}(\kappa) = \Pr\left[\mathbf{c} \in \mathsf{orth}(\mathbf{A}) \mid [\mathbf{c}]_{3-\zeta} \leftarrow \mathcal{A}(\mathcal{BG}, [\mathbf{A}]_{\zeta})\right] \leq \nu(\kappa) \qquad \zeta = \{1,2\}$

Example As an example for the \mathcal{D}_2 -KerMDH assumption, let the random matrix $\mathbf{A} \in \mathbb{Z}_p^{3 \times 2}$ be defined as follows:

$$\mathbf{A} = \begin{pmatrix} a_1 & 0\\ 0 & a_2\\ 1 & 1 \end{pmatrix}$$

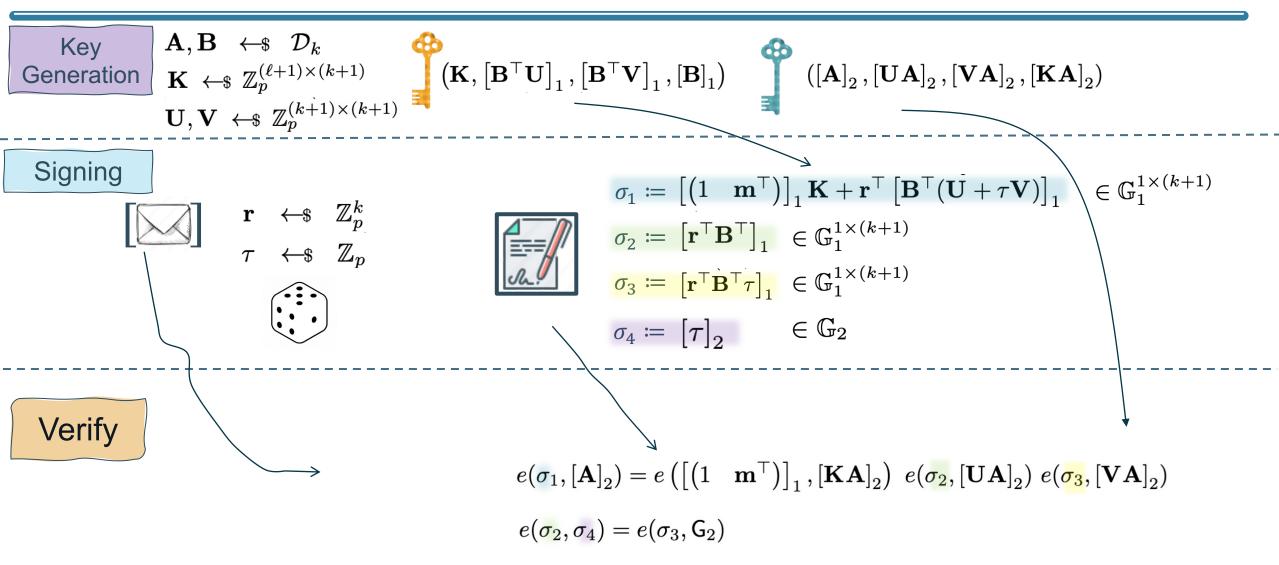
where $a_1, a_2 \leftarrow \mathbb{Z}_p^*$. Given $[\mathbf{A}]_{\zeta}$, i.e.,

$$[\mathbf{A}]_{\zeta} = egin{pmatrix} [a_1]_{\zeta} & 0 \ 0 & [a_2]_{\zeta} \ [1]_{\zeta} & [1]_{\zeta} \end{pmatrix} \;,$$

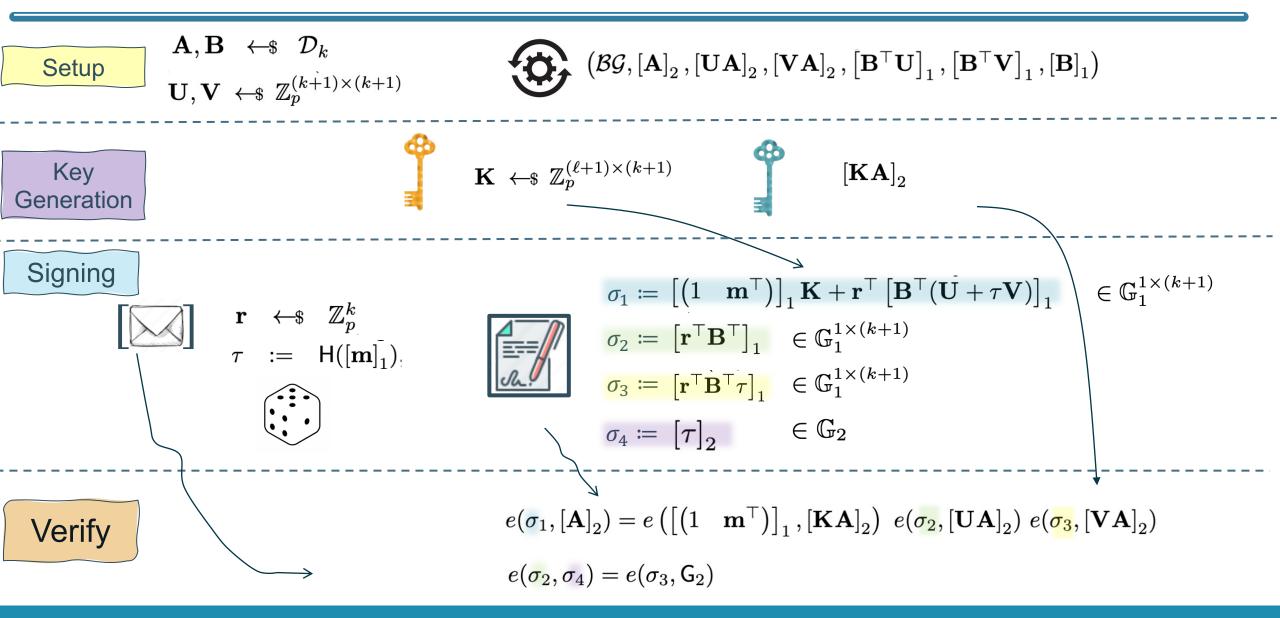
it is computationally hard to find $[\mathbf{c}]_{3-\zeta}$, where $\mathbf{c} := \begin{pmatrix} c_1 & c_2 & c_3 \end{pmatrix} \neq \mathbf{0}$, such that,

$$egin{pmatrix} (c_1 & c_2 & c_3) \cdot egin{pmatrix} a_1 & 0 \ 0 & a_2 \ 1 & 1 \end{pmatrix} = egin{pmatrix} a_1c_1 + c_3 & a_2c_2 + c_3 \end{pmatrix} = oldsymbol{0} \ \cdot \ \end{array}$$

Kiltz, Pan and Wee SPS [KPW15]:



Modified KPW15:



TSPS Under Standard Assumptions: adp-T-UF-1 [MMSST24]

We start from a SPS proposed by Kiltz et al. [KPW15], where the first and second signature components are as follows:

KPW15:
$$(\sigma_1, \sigma_2) := \left(\underbrace{\left[(1 \mathbf{m}^\top) \right]_1 \mathbf{K}}_{\text{SP-OTS}} + \mathbf{r}^\top \left[\mathbf{B}^\top (\mathbf{U} + \tau \cdot \mathbf{V}) \right]_1, [\mathbf{r}^\top \mathbf{B}^\top]_1 \right)$$

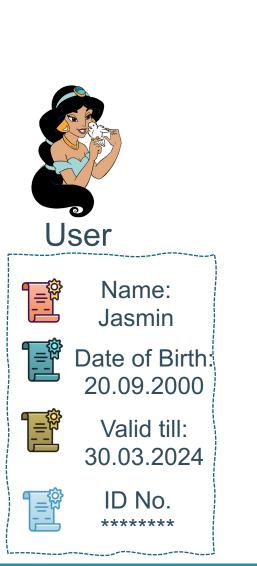
We slightly modify the scheme such that the tag τ is obtained from a collision-resistant hash function.

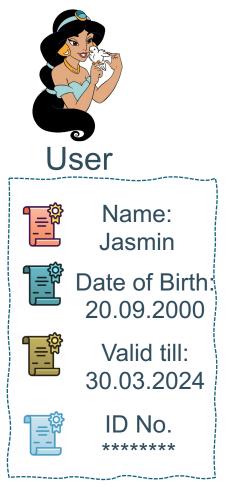
$$(\sigma_1, \sigma_2) = \left(\left[\left(1 \ \mathbf{m}^\top \right) \right]_1 \mathbf{K}_i + \mathbf{r}_i^\top \left[\mathbf{B}^\top (\mathbf{U} + \tau \cdot \mathbf{V}) \right]_1, \left[\mathbf{r}_i^\top \mathbf{B}^\top \right]_1 \right)$$

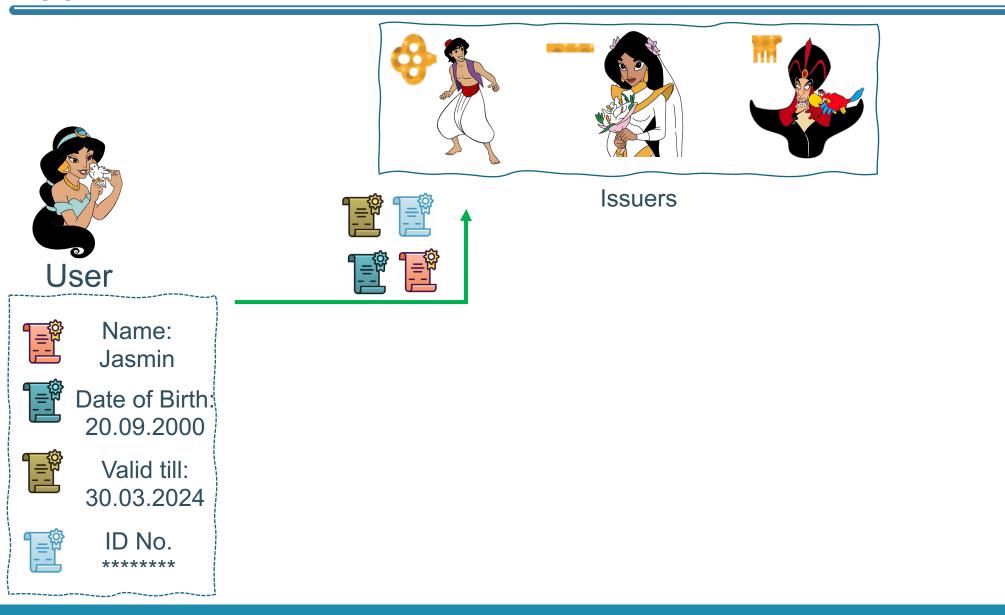
Finally, the partial signature is defined as:

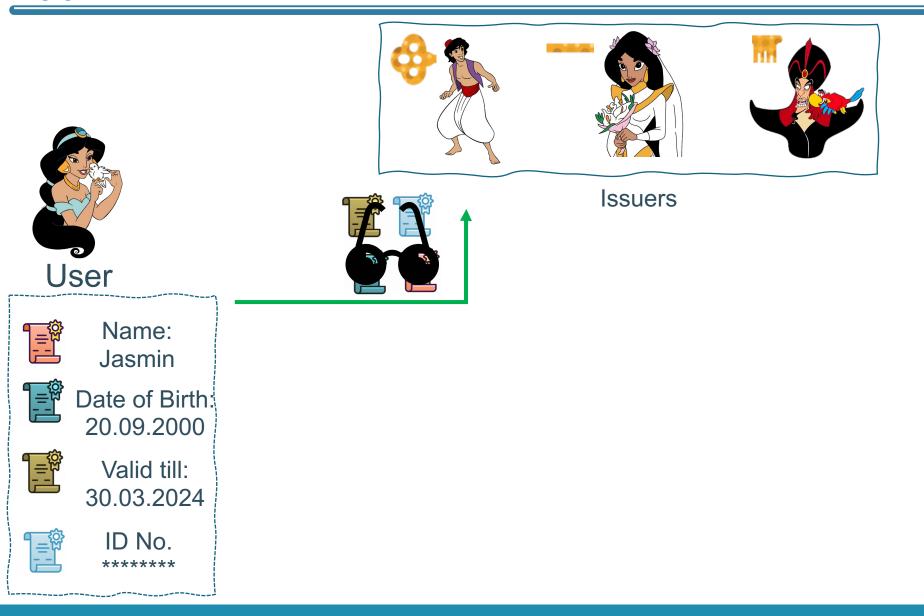
1:
$$\mathbf{r}_{i} \leftarrow \mathbb{Z}_{p}^{k}$$
.
2: $\tau := \mathcal{H}([\mathbf{m}]_{1})$.
3: Output $\Sigma_{i} := (\sigma_{1}, \sigma_{2}, \sigma_{3}, \sigma_{4})$ s.t.
4: $\sigma_{1} := \left[\left(\mathbf{1} \ \mathbf{m}^{\top} \right) \right]_{1} \mathbf{K}_{i} + \mathbf{r}_{i}^{\top} \left[\mathbf{B}^{\top} (\mathbf{U} + \tau \mathbf{V}) \right]_{1}$,
 $\sigma_{2} := \left[\mathbf{r}_{i}^{\top} \mathbf{B}^{\top} \right]_{1}$,
 $\sigma_{3} := \left[\tau \mathbf{r}_{i}^{\top} \mathbf{B}^{\top} \right]_{1}$,
 $\sigma_{4} := [\tau]_{2}$.

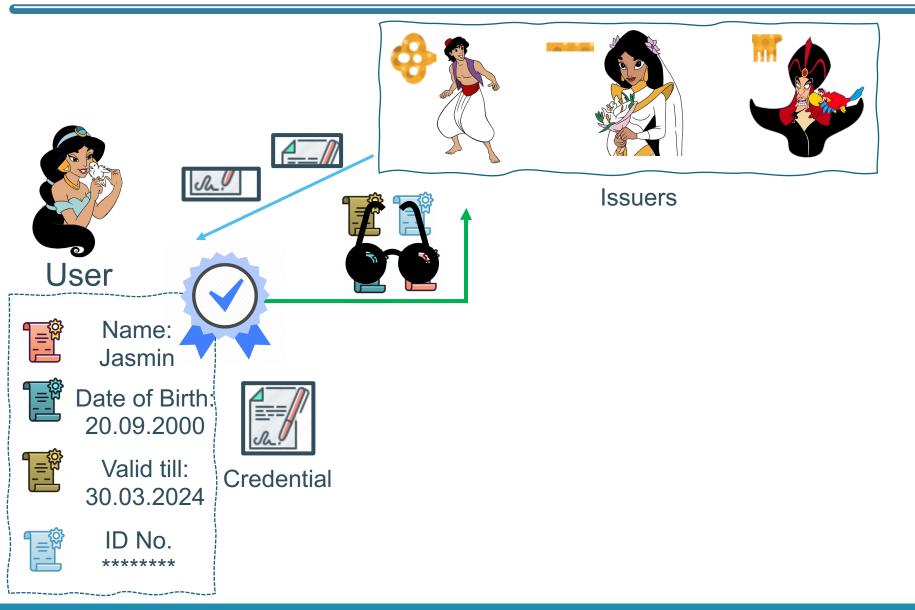
Application: Anonymous Credentials [Cha84]

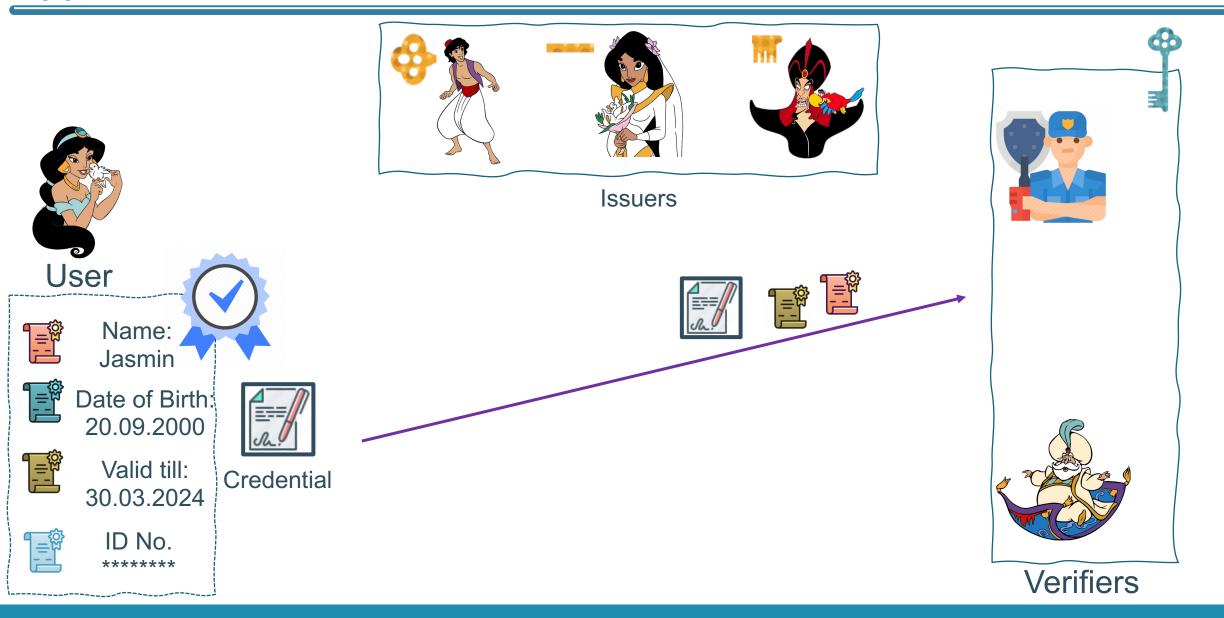


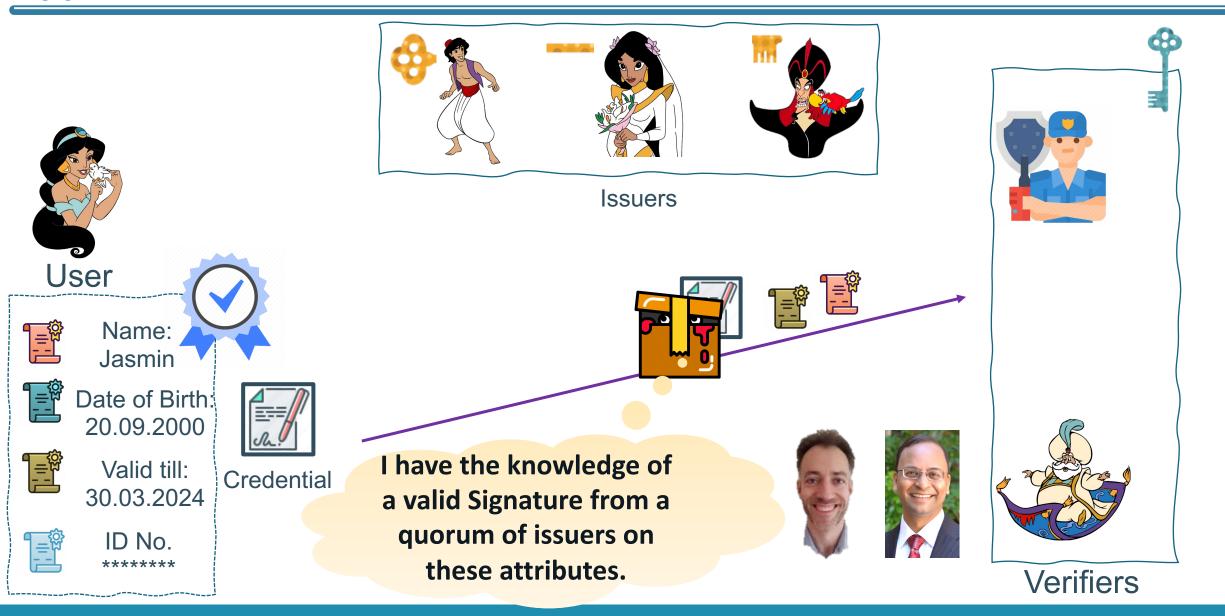


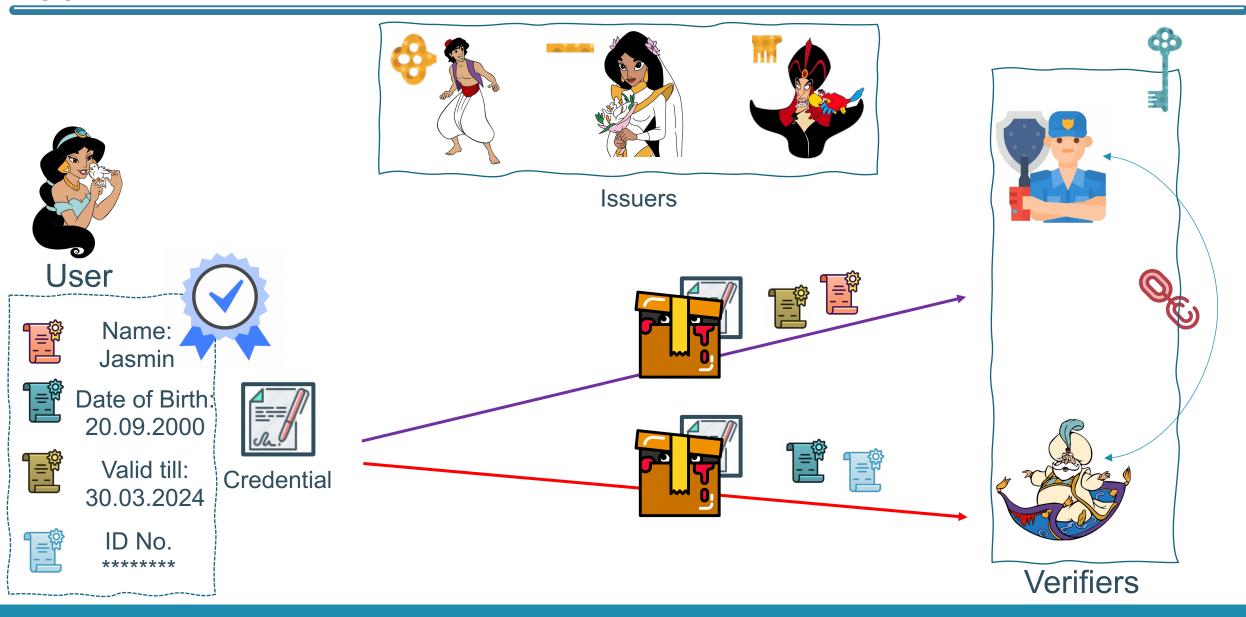












Conclusion:

- Threshold signatures tolerate some fraction of of corrupted signers.
- SPS enable a modular framework to design complex systems more efficiently.
- No Threshold SPS exists.
- The first (Non-Interactive) TSPS over indexed Diffie-Hellman message spaces.
- A TSPS based on standard assumptions.
- We discussed TIAC as a primary application of this scheme.

Potential open questions and subsequent works:

- 1) Achieve a TSPS as efficient as the initial work while as secure as the latter TSPS.
- 2) Extend NI-TSPS to NI-TSPS on Equivalence-Classes [2024/625].
- 3) How we can achieve Accountable NI-TSPS.
- 4) Tightly secure TSPS.

52/63

References

- [Cha84] David Chaum. "A new paradigm for individuals in the information age." In *IEEE Symposium on Security and Privacy* 1984. [BLS04] Boneh et al. "Short signatures from the Weil pairing.", Journal of Cryptology, 2004.
- [Sha79] Adi Shamir. "How to share a secret.", Communications of the Association for Computing Machinery, November 1979.
- [Bol03] Alexandra Boldyreva. "Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-Hellman-group signature scheme.", PKC 2003.
- [GMR89] Goldwasser et al. "The knowledge complexity of interactive proof-systems."
- [AFG+10] Abe et al. "Structure-preserving signatures and commitments to group elements.", CRYPTO 2010.
- [AGHO11] Abe et al. "Optimal structure-preserving signatures in asymmetric bilinear groups.", CRYPTO 2011.
- [Fuc09] Georg Fuchsbauer. "Automorphic signatures in bilinear groups and an application to round-optimal blind signatures." Cryptology ePrint Archive, Report 2009/320, 2009.
- [PS16] David Pointcheval and Olivier Sanders. "Short randomizable signatures.", CT-RSA 2016.
- [Gha16] Essam Ghadafi. "Short structure-preserving signatures", CT-RSA 2016.
- **[GS08]** Jens Groth and Amit Sahai. "Efficient non-interactive proof systems for bilinear groups.", EUROCRYPT 2008.
- **[FHS19]** Fuchsbauer et al. "Structure-preserving signatures on equivalence classes and constant-size anonymous credentials.", AC'14, JoC'19.
- **[SAB+19]** Sonnino et al. "Coconut: Threshold issuance selective disclosure credentials with applications to distributed ledgers.", NDSS 2019.
- **[BCK+22]** Bellare et al. "Better than advertised security for non-interactive threshold signatures.", CRYPTO 2022.
- **[KPW15]** Eike Kiltz, Jiaxin Pan, and Hoeteck Wee. "Structure-preserving signatures from standard assumptions, revisited.", Crypto 2015.

Thank You!

KU LEUVEN

ssedagha@esat.kuleuven.be

The illustrations are credited to Disneyclips.