Unlinkable Policy-Compliant Signatures for Compliant and Decentralized Anonymous Payments*

Christian Badertscher¹, Mahdi Sedaghat² and Hendrik Waldner³

Input Output (Switzerland)
 COSIC, KU Leuven, Belgium
 University of Maryland, College Park & Max Planck Institute for Security and Privacy

* Link to full-version: https://eprint.iacr.org/2023/1070.pdf.

Outline:

Problem Statement

- Lack of privacy in the 1st generation of cryptocurrencies.
- Lack of accountability in the 2nd generation of cryptocurrencies.

Accountable Privacy and Existing Solutions

- Fine-grained Privacy Balancing
- Prevention vs Detection
- UL-PCS
 - Generic Construction
 - Applications: Accountable Decentralized Anonymous Payment (DAP) systems
 - Benchmarks
- Open questions and ongoing projects

Easy: 23 Slides

Semi-hard: 5 slides

Needs background: 2 slides

The PID of the payee and payer and the value in Bitcoin are publicly available!!If CUHK pays employee in Bitcoin?!All salaries are visible

- Distributed anonymous payments (DAP).
- The identity and the values are hidden.
- Such cryptocurrencies can be used in an illegal context
- Tax evasion
- Ransomware
- Drug trafficking
- Terrorist funding
- etc.

Privacy

- Users willing a fully private systems
- No traceability
- Unlinkability

Auditability

- To prevent possible illicit activities
- To trace the suspicious actions

An official website of the United States Government Accessibility Languages Contact VOID U.S. DEPARTMENT OF THE TREASURY About TREASURY POLICY ISSUES Data SERVICES NEWS Q SEARCH HOME > NEWS > PRESS RELEASES Contact Contact Contact Contact Contact

The European Union may be stepping up its regulatory actions in the privacy sector.

PRESS RELEASES

U.S. Treasury Sanctions Notorious Virtual Currency Mixer Tornado Cash

t f 🈏 🖶 385

August 8, 2022

NEWS

Press Releases

Readouts

Testimonies

Featured Stories

Press Contacts

Webcasts

Statements & Remarks

WASHINGTON – Today, the U.S. Department of the Treasury's Office of Foreign Assets Control (OFAC) sanctioned virtual currency mixer Tornado Cash, which has been used to launder more than \$7 billion worth of virtual currency since its creation in 2019. This includes over \$455 million stolen by the Lazarus Group, a Democratic People's Republic of Korea (DPRK) state-sponsored hacking group that was sanctioned by the U.S. in 2019, in the largest known virtual currency heist to date. Tornado Cash was subsequently used to launder more than \$96 million of malicious cyber actors' funds derived from the June 24, 2022 Harmony Bridge Heist, and at least \$7.8 million from the August 2, 2022 Nomad Heist. Today's action is being taken pursuant to Executive Order (E.O.) 13694, as amended, and follows OFAC's May 6. 2022 designation of virtual currency mixer Blender.io (Blender).

LATEST NEWS

March 12, 2023

Joint Statement by the Department of the Treasury, Federal Reserve, and FDIC

READOUT: U.S. Candidate for President of the World Bank Ajay Banga Visit to the United Kingdom

March 10, 2023

The U.S. Economic Recovery in International Context

READOUT: Secretary of the Treasury Janet L. Yellen Convenes Financial Regulators

Testimony of Secretary of the Treasury Janet L. Yellen Before the Committee on Ways and Means, U.S. House of Representatives

The press release also claimed that the protocol had been used "to launder more than \$7 billion worth of virtual currency since its creation in 2019."

Some Existing Solutions:

Public Key Encryption:

- <u>A central auditor can open the details of suspicious tnx.</u>
- If Jafar be the auditor then he can see all tnx details.
- 2 Threshold Encryption:
 - The majority of auditors can open the details of suspicious tnx.
 - If Jafar and his friends be the auditors then they can see all tnx details.

Prevention vs. Detection:

We are interested in: Prevention rather than Detection Joint policy

Possible solution for UTxO-based systems:

Some Possible Solutions:

Policy-Complaint Signatures [BMW21]:

Correctness

Unforgeability

Attribute-Hiding

IF we want to remove the links then the users must be able to update their keys!

We need an extra algorithm called KeyRand(.)

Unlinkable Policy-Complaint Signatures: Syntax

Unlinkable PCS: Architecture

Main Ingredients:

Digital Signatures

Predicate-Only Predicate Encryptions

Pseudo-Random Functions

Zero-Knowledge proofs

• A general framework for efficient generic constructions of cryptographic primitives over bilinear groups*.

- Straight-line extraction.
- Standard Model.

> Applications: group signatures, blind signatures, etc.

Enabling Modular Design in complex systems
 Makes easy to combine building blocks.

Structure-Preserving Signatures [AFG+10]:

Private-Key Predicate-Encryptions [KSW07]:

- **Correctness:** The decryption of a correctly generated ciphertext based on x returns F(x).
- Attribute-Hiding: Ciphertext does not reveal any information about attribute sets x

Inner-Product functionality: $F(x, y) = \sum x_i y_i$

Predicate-Only Predicate-Encryptions

Pseudo-Random Functions (PRF):

NIZKs [GMR89]

- **Completeness:** honest P always will convince the honest V
- **Zero-Knowledge (ZK):** dishonest V only gets to know that the statement is true.
- Knowledge Soundness: dishonest P cannot convince honest V, unless she knows some secret "wit"

Ext (proof, **Ext-TD)** \rightarrow witness: (stat, witness) $\in R_L$

Sim(stat, Sim-TD) \rightarrow proof' \approx_c proof

Our Generic Construction:

 $k \leftarrow \mathsf{PRF.KeyGen}(1^{\lambda})$ $(\mathsf{sk}_{sig}, \mathsf{vk}_{sig}) \leftarrow \mathsf{DS.Setup}(1^{\lambda})$ $\mathsf{sk}_{f_{x}} \leftarrow \mathsf{PE.KeyGen}(\mathsf{msk}_{\mathsf{PE}}, \mathsf{f}_{x})$ $\sigma_{\mathsf{sig}}^{1} \leftarrow \mathsf{DS.Sign}\left(\mathsf{sk}_{\mathsf{sig}}^{A}, (\mathsf{k}, \mathsf{x})\right)$ $\sigma_{\mathsf{sig}}^{2} \leftarrow \mathsf{DS.Sign}\left(\mathsf{sk}_{\mathsf{sig}}^{A}, (\mathsf{k}, \mathsf{vk}_{\mathsf{sig}})\right)$ $\sigma_{\mathsf{sig}}^{3} \leftarrow \mathsf{DS.Sign}\left(\mathsf{sk}_{\mathsf{sig}}^{A}, (\mathsf{k}, \mathsf{sk}_{\mathsf{fx}})\right)$ $\mathsf{usk} = \left(\mathsf{k}, \mathsf{sk}_{f_{x}}, \mathsf{x}, \sigma_{\mathsf{sig}}^{1}, \sigma_{\mathsf{sig}}^{2}, \sigma_{\mathsf{sig}}^{3}\right)$

 $CRS_{Rand} \leftarrow NIZK_{\mathcal{L}_{1}}.Setup(1^{\lambda})$ $CRS_{Sign} \leftarrow NIZK_{\mathcal{L}_{2}}.Setup(1^{\lambda})$ $(mpk_{PE}, msk_{PE}) \leftarrow PE.Setup(1^{\lambda})$ $(sk_{sig}^{A}, vk_{sig}^{A}) \leftarrow DS.Setup(1^{\lambda})$ PRF setup

 $(pk_0, sk_0) \leftarrow ReRand(usk, -1)$

If NIZK_{\mathcal{L}_1}. Verify(ins_r, π_{ctr}) = 1: ID_S \leftarrow PRF.Eval(k,ctr) If ct_{ctr} \leftarrow PE. Dec(sk_{f_x}, ct_R) = 1: $\pi_s \leftarrow$ NIZK_{\mathcal{L}_2}. Prove(wit_s, ins_s) $ctr \leftarrow ctr+1$ $ID_{ctr} \leftarrow PRF. Eval(k, ctr)$ $(sk_{sig}^{ctr}, vk_{sig}^{ctr}) \leftarrow DS. Setup(1^{\lambda})$ $\sigma_{ctr} \leftarrow DS. Sign(sk_{sig}, (vk_{sig}^{ctr}, ID_{ctr}))$ $ct_{ctr} \leftarrow PE. Enc(mpk_{PE}, x)$ $\pi_{ctr} \leftarrow NIZK_{\mathcal{L}_{1}}. Prove(wit_{r}, ins_{r})$ $Return(pk_{ctr}, sk_{ctr})$

If NIZK_{\mathcal{L}_1}. Verify(ins_r, π_{ctr}) = 1 and NIZK_{\mathcal{L}_2}. Verify(ins_s, π_s) = 1

NIZK Relations:

1. Digital Signatures

- BLS signatures [BLS04] when message and signatures are public, else
 - Selectively Randomizable SPS and SPS-EQ in [FHS19]
 - Constant signature size (3 base group elements)
 - Groth-Sahai [GS08] proof system friendly

2. Predicate-Only Predicate Encryptions

- Okamoto-Takashima [OT12]
- Policy: Inner-products predicate functionalities

3. Pseudo-Random functions

- Dodis-Yampolsky PRF [DY05]
- 4. NIZK
 - Sigma protocols [Sch89]: when the scalar is known
 - Groth-Sahai [GS08] proof systems: when all witnesses are group elements (batched version from ACM CCS'2017 [HHK+17])
 - Bulletproof range-proofs [BBP+18]

Privacy is expensive?!

50

50

40

40

Ubuntu 20.04.2 LTS an Intel Core i7-9850H CPU @ 2.60 GHz with 16 GB of memory

Charm-Crypto framework Barreto-Naehrig asymmetric curve BN254 with embedding degree 12

How the policies can be defined? IP vs. Role-based

Fine-grained policies

 $F: [n_R] \times [n_R] \to \{0,1\}$ $F(x, y) \to \{0,1\}$

Role-based Access control

 $F: S \land \mathcal{R} \to \{0,1\}$ $F(x, y) = S(x) \land R(y)$

UL-PCS with separable policies

Benchmarks: Role-based and Separate Policies

Elliptic Curve	Library	\mathbf{M}_1 time	\mathbf{E}_{1} time	\mathbf{M}_2 time	\mathbf{E}_2 time	\mathbf{M}_{T} time	\mathbf{E}_T time	\mathbf{P} time
BN-254	Charm-Crypto	$3.3 \ \mu { m s}$	$0.9 \mathrm{ms}$	$7.1 \ \mu s$	$1.6 \mathrm{ms}$	$21.4~\mu {\rm s}$	4.8 ms	$18.5 \mathrm{ms}$
BN-256	bplib	$3.8~\mu { m s}$	$0.3 \mathrm{ms}$	$6 \ \mu { m s}$	$1 \mathrm{ms}$	$3~\mu{ m s}$	$2.3 \mathrm{\ ms}$	$2.74 \mathrm{\ ms}$

Conclusion:

- 1. We talked the importance of accountable anonymous.
- 2. The existing challenges and possible solutions.
- 3. We overviewed the syntax of unlinkable PCS.
- 4. We discussed their applications and main building blocks.
- 5. We talked about two more efficient instantiation than the generic model.
- 6. We discussed the complexity of the proposed solutions.

Potential open questions and subsequent works:

• Minimize the needed trust to the central issuer.

- - Design more efficient PO-PE \rightarrow more efficient generic construction.

• Take a different approach with the same security properties.

References:

- [Schnorr89] C.P. Schnorr. "Efficient identification and signatures for smart cards.", CRYPTO 1989
- [GMR89] Sh. Goldwasser, S. Micali, and Ch. Rackoff. "The knowledge complexity of interactive proof-systems.", STOC 1985
- [GS08] J. Groth and A. Sahai. "Efficient non-interactive proof systems for bilinear groups.", EUROCRYPT 2008
- [Shamir79] A. Shamir. "How to Share a Secret". In Commun. ACM 22(11), pp. 612–613, 1979.
- [OT12] T. Okamoto, K. Takashima: "Adaptively attribute-hiding (hierarchical) inner product encryption.", EUROCRYPT 2012
- [BMW21] C. Badertscher, C. Matt, H. Waldner: "Policy-Compliant Signatures.", TCC 2021
- [BBP+18] B. Bunz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, G. Maxwell: "Bulletproofs: Short proofs for confidential transactions and more.", IEEE Symposium on Security and Privacy 2018
- [DY05] Y. Dodis, A. Yampolskiy: "A verifiable random function with short proofs and keys.", PKC 2005
- [EKKV22] F. Engelmann, T. Kerber, M. Kohlweiss, M. Volkhov: "ZSwap: zk-SNARK based Non-Interactive multi-asset swaps", PETS 2022
- [FHS19] G. Fuchsbauer, C. Hanser, D. Slamanig: "Structure-preserving signatures on equivalence classes and constant-size anonymous credentials." Journal of Cryptology 2019
- [BLS04] D. Boneh, B. Lynn, H. Shacham: "Short signatures from the Weil pairing.", ASIACRYPT 2001
- [AFG+10] Abe et al. "Structure-preserving signatures and commitments to group elements.", CRYPTO 2010.
- [KSW07] J. Katz, A. Sahai, B. Waters: "Predicate encryption supporting disjunctions, polynomial equations, and inner products.", EUROCRYPT 2008
- [HHK+17] G. Herold, M. Hoffmann, M. Klooß, C. R'afols, A. Rupp: "New techniques for structural batch verification in bilinear groups with applications to groth-sahai proofs.", ACM CCS 2017

Thank You!

The illustrations are credited to Disneyclips.

