

ENGINEERING SCIENCE COSIC

Unlinkable Policy-Compliant Signatures for Compliant and Decentralized Anonymous Payments

Christian Badertscher

Input Output

Mahdi Sedaghat COSIC, KU Leuven

Hendrik Waldner

Univ. of Maryland

PETS'24, Bristol, UK – July 9th

Digital Signatures: An Equivalence of Written Signature

The main Goal: To bind a message to its author.

Digital Signatures are everywhere on the internet.

Especial focus on financial transactions.

Motivation: UTxO-based cryptocurrencies

 $Vrf(\bigcirc, (\bigcirc, tnx), \sigma) = 1$

The PID of the **payee** and **payer** and the **value** in Bitcoin are publicly available!! If your employer pays employee in Bitcoin?! All salaries are visible

Distributed anonymous payments (DAP).

The identity and the values are hidden.

- Such cryptocurrencies can be used in an illegal context
- Tax evasion
- Ransomware
- Drug trafficking
- Terrorist funding
- etc.

Privacy vs. Accountability: In theory

Privacy

- Users willing a fully private systems
- No traceability
- Unlinkability

Auditability

- To prevent possible illicit activities
- To trace the suspicious actions

Some Existing Solutions: Accountable Privacy

Prevention vs. Detection:

We are interested on: Joint policy

COSIC (Computer Security and Industrial Cryptography) group **KU LEUVEN**

Possible solution for UTxO-based systems:

Some Possible Solutions: Related Cryptographic Primitives

	1 Unforgeability	2 P/A-based	3 Joint policy	کی S/R privacy	5 Unlinkability
Digital Signatures	+				
Attribute-based Signatures	+	+			
Policy-based Signatures	+	+	+		
Policy-Compliant Signatures	+	+	+	+	

Unlinkable Policy-Compliant Signatures:

It improves PCS [BMW21] from TCC'21.

Unlinkable Policy-Compliant Signatures:

Main Ingredients:

Digital Signatures

Predicate-Only Predicate Encryptions

Pseudo-Random Functions

Zero-Knowledge proofs

An Instantiation of Generic construction:

1. Digital Signatures

- BLS signatures [BLS04] when message and signatures are public, else
 - Selectively Randomizable SPS and SPS-EQ in [FHS19]
 - Constant signature size (3 base group elements)
 - Groth-Sahai [GS08] proof system friendly

2. Predicate-Only Predicate Encryptions

- Okamoto-Takashima [OT12]
 - Policy: Inner-products predicate functionalities

3. Pseudo-Random functions

- Dodis-Yampolsky PRF [DY05]
- 4. NIZK
 - Sigma protocols [Sch89]: when the scalar is known
 - Groth-Sahai [GS08] proof systems: when all witnesses are group elements (batched version from ACM CCS'2017 [HHKRR17])
 - Bulletproof range-proofs [BBPWM18]

Privacy is expensive?!

Ubuntu 20.04.2 LTS an Intel Core i7-9850H CPU @ 2.60 GHz with 16 GB of memory

Charm-Crypto framework BN254

Benchmarks: Role-based and Separate Policies

Conclusion: What we didn't cover

popets-2024-0115 eprint/2023/1070

We formally define/prove 4 different security properties:

- Correctness
- Unforgeability
- Attribute-Hiding
- Unlinkablity
- Details about more efficient alternatives:
 - Role-based policies
 - Separable policies

Application to DAPs. Regulated One-Time Account.

• More applications.

Potential Future Work:

• Minimize the needed trust to the central issuer.

- - Design more efficient PO-PE \rightarrow more efficient generic construction.

• Take a different approach with the same security properties. (Implement it using zk-SNARKs)

References:

- [Schnorr89] Schnorr, Claus-Peter. "Efficient identification and signatures for smart cards." In Conference on the Theory and Application of Cryptology, pp. 239-252. Springer, New York, NY, 1990.
- [GMR89] Goldwasser, Shafi, Silvio Micali, and Chales Rackoff. "The knowledge complexity of interactive proof-systems." In *Providing* Sound Foundations for Cryptography: On the Work of Shafi Goldwasser and Silvio Micali, pp. 203-225. 2019.
- [GS08] Jens Groth and Amit Sahai. Efficient non-interactive proof systems for bilinear groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages 415–432. Springer, Heidelberg, April 2008
- [Shamir79] A. Shamir. How to Share a Secret. In Commun. ACM 22(11), pp. 612–613, 1979.
- [OT12] Okamoto, T., Takashima, K.: Adaptively attribute-hiding (hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (Apr 2012).
- [BMW21] Badertscher, C., Matt, C., Waldner, H.: Policy-compliant signatures. In: Nissim, K., Waters, B. (eds.) TCC 2021, Part III. LNCS, vol. 13044, pp. 350–381. Springer, Heidelberg (Nov 2021).
- [BBPWM18] B[•]unz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential transactions and more. In: 2018 IEEE Symposium on Security and Privacy. pp. 315–334
- [DY05] Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (Jan 2005).
- [EKKV22] Engelmann, F., Kerber, T., Kohlweiss, M., Volkhov, M.: Zswap: zk-snark based non-interactive multi-asset swaps. Proc. Priv. Enhancing Technol. 2022(4), 507–527 (2022).
- [FHS19] Fuchsbauer, G., Hanser, C., Slamanig, D.: Structure-preserving signatures on equivalence classes and constant-size anonymous credentials. Journal of Cryptology 32(2), 498–546 (Apr 2019).
- [BLS04] Boneh, D., Lynn, B., Shacham, H.: Short signatures from the Weil pairing. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 514–532. Springer, Heidelberg (Dec 2001).

KU LEUVEN

ssedagha@esat.kuleuven.be

The illustrations are credited to Disneyclips.

