
zkLogin: Privacy-preserving blockchain
authentication with existing
credentials

Foteini Baldimitsi | Kostas Chalkias | Yan Ji | Jonas Lindstrøm | Deepak Maram | Ben

Riva | Mahdi Sedaghat | Arnab Roy | Joy Wang

ACM CCS’24, SBC’24, RWC’25 17/03/2025, O1Labs Seminars

PostDoc at Cosic, KU Leuven

Co-Founder at Soundness Labs (soundness.xyz)

Mysten Labs and Sui:

Sui (L1) Walrus (DDA) Move

(Rust Smart Contract)

Deepbook

(DeFi)

Enoki

It has been used for over 7.6 million transactions.

With around 2.4 million unique proofs (March 14).

Deployed on
zkLogin after ~1 year?
One of the widely used zkApps to date

There are around
100 million
active crypto wallets

and there are several
BILLIONS
of web2 accounts

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Mnemonics and keys are not going
to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is accessibility.

Can we make it as easy as signing in with
Google, Facebook and co?

● People don’t want to use separate

passwords for each and every app,

each and every web2 service

● Extremely likely they already have a

Google, Facebook, Amazon account

● Solution: use OAuth to leverage these

already existing accounts

ht tps:/ /cdn.vox-

cdn.com/ thum bor/ncbDuMeGzbUI6Ve0w6npZnclPSQ=/0x0:1125x2184/2000x1333/f ilters: focal(574x1530:575x1531)/cdn.vo

x-cdn.com/uploads/chorus_asset/ fil e/22756604/ IM G_2175.jpeg

zkLogin:
OAuth + Zero Knowledge Proof

Non-custodial

User-friendly

Privacy-preserving

OpenID Connect (an extension of OAuth 2.0)

JWT: JSON Web Token
Base64-encoded, RSA-signed

JWT as an alternative to a
private key?

A Google-issued JWT (decoded)

you can ask for email
and other personal info

Inject a fresh public key into JWT!

replace nonce with
user provided data:

ephemeral pub key +
expiration

We have a DIGITAL CERT over our fresh key + expiration

zkLogin tricks:

JWT token
signed by Google / FB

aud = walletID

sub = userID

we could ask
for email too

nonce = eph.

pubKey
+ expiration

How to ensure users’ privacy?

Add a persistent randomizer: salt

Salt: A persistent per-
user secret for
unlinkability

How to hide the JWT?
SNARKs to the rescue!

Goal: Prove you have a valid JWT + you know the salt + you injected the

ephemeral key into JWT

- Verify JWT’s signature using Google’s public key

- Verify the ephemeral public key is injected into the JWT’s nonce

- Verify that the address is derived correctly from the JWT’s userID, walletID,

providerID + user’s salt

zkLogin in one slide: e2e

Who maintains the salt?

- Client-side on-device management
- Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a “salt service”
- Each wallet can maintain their own service/delegate it

- Privacy models: Store salt either in TEE/MPC/plaintext

- Auth policies to the service: Either JWT or 2FA

Circuit details

- Implemented in Circom DSL: ~1M R1CS constraints
- We chose Groth16 due to its small proofs + rich ecosystem + fast prover
- Key operations

- SHA-2 (66%)
- RSA signature verification (14%) using tricks from [KPS18]
- JSON parsing, Poseidon hashing, Base64, extra rules (20%)

- Prover based on rapidsnark
- C++ and Assembly based

zkLogin latency

Latency for most zkLogin transactions
is very similar to traditional ones!

These numbers correspond
only to the first transaction

of a session

Salt service on AWS Nitro
enclave (m5.xlarge10: 4
vCPUs, 16GB RAM)

ZKP generation on Google
Cloud (n2d-standard-16: 16
vCPUs, 64GB RAM).

zkLogin trade-offs

The option of multi-sig option:

Involve more IDPs instead of one

Is zkLogin really Non-Custodial?

zkLogin

Google
Facebook
Twitch

native authenticator

non-custodial
*discoverable, claimable
invisible wallets
semi-portable, 2FA

single-click accounts w/

Apple

Slack

Microsoft

JWTbeyond zkLogin
Some complementary ideas

JWTbeyond zkLogin
Some complementary ideas

Thank You!

Some of the slides done by Mysten labs team.

	Slide 1: zkLogin: Privacy-preserving blockchain authentication with existing credentials
	Slide 2: Mysten Labs and Sui:
	Slide 3: There are around 100 million active crypto wallets
	Slide 4: and there are several BILLIONS of web2 accounts
	Slide 5: Web3 has an onboarding problem
	Slide 6: Web3 has an onboarding problem
	Slide 7: Web3 has an onboarding problem
	Slide 8: Web3 has an onboarding problem
	Slide 9: Web3 has an onboarding problem
	Slide 10
	Slide 11: Can we make it as easy as signing in with Google, Facebook and co?
	Slide 12
	Slide 13: OpenID Connect (an extension of OAuth 2.0)
	Slide 14: JWT: JSON Web Token
	Slide 15: A Google-issued JWT (decoded)
	Slide 16: Inject a fresh public key into JWT!
	Slide 17: zkLogin tricks:
	Slide 18: How to ensure users’ privacy?
	Slide 19: How to hide the JWT? SNARKs to the rescue!
	Slide 20: zkLogin in one slide: e2e
	Slide 21: Who maintains the salt?
	Slide 22: Circuit details
	Slide 23: zkLogin latency
	Slide 24: zkLogin trade-offs
	Slide 25: zkLogin
	Slide 26: JWT beyond zkLogin Some complementary ideas
	Slide 27: JWT beyond zkLogin Some complementary ideas
	Slide 28

