zkLogin: Privacy-preserving blockchain
authentication with existing
credentials

Foteini Baldimitsi | Kostas Chalkias | Yan Ji | Jonas Lindstrgm | Deepak Maram | Ben
Riva | Mahdi Sedaghat | Arnab Roy | Joy Wang

PostDoc at Cosic, KU Leuven
Co-Founder at Soundness Labs (soundness.xyz)

ACM CCS’24, SBC’'24, RWC’25 17/03/2025, OlLabs Seminars

Mysten Labs and Sui:

zkLogin zkLogin after ~1 year?

Deployed on One of the widely used zkApps to date

It has been used for over 7.6 million transactions.
With around 2.4 million unique proofs (March 14).

Walrus (DDA) Move Deepbook Enoki
(Rust Smart Contract) (DeFi)

here are around

100 million
active crypto wallets

and there are several

BILLIONS
of web2 accounts

o o

5 Lilkien 100 wmillien

Web3 has an onboarding problem

MNew to MetaMask?

Web3 has an onboarding problem

B meETAMASK

B METAMASK

=

Access your wallet with your
Secret Recovery Phrase

Type your Secret Recovery
Phrase

M, | already honee

Web3 has an onboarding problem

¥ METAMASK

Confirm your Secret Backup Phrase

Web3 has an onboarding problem

¥ METAMASK

B METAMASK Bridge tokens
Conf

seld

Show more

From this network To this network

@ Ethereum @ Polygon

M, | already have a seed

You send You receive
O vy oo & WETH 0.010002

Verified on 4 sources. You can confirm the token oddress
on PolygonScan. @

Web3 has an onboarding problem

LN N MetaMask Notification

Signature Request

B METAMASK

=

O https://opensea.io
To this network

@ Polygon

You receive

M, | already have a seed

& WETH 0.010002

Verified on 4 sources. You can confirm the token oddress
on PolygonScon. @

Mnemonics and keys are not going
to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is ac_

Can we make it as easy as signing in with
Google, Facebook and co?

® People don’t want to use separate
passwords for each and every app,
each and every web2 service

e Extremely likely they already have a
Google, Facebook, Amazon account

® Solution: use OAuth to leverage these
already existing accounts

zkLogin:
OAuth + Zero Knowledge Proof

Non-custodial
User-friendly
Privacy-preserving

OpenlID Connect (an extension of OAuth 2.0)

| !
| I —)
I | ‘ I
= I
'\ / : i :
: opens 1' | |
| | I I
I
I

JWT: JSON Web Token ke

Base64-encoded, RSA-signed

JISON Web Token (AWT)

Header Pm{load S'ugna‘ture <= —

- J 1 T

Token Type Algorithm Claims Encoded Header Encoded Payload Secret info

£ N

Client ID Issuer ID Nonce User ID email

f
|
|
I
|
]

(RsA using SHA256)

A Google-issued JWT (decoded)

£
"alg" : "RS256"
"kid" : "A69F18087968290972e7909d 10 11cd61b1e3",
"tVP": IIJWT"
3
Paﬂoad
{

‘> "iss": "https://accounts-google.com",
"azp": "http://575519204237-msop9ep45u2u@98hapqmngv8d84qdc8k-apps.googleusercontent.com",

'\ "aud": "http://575519204237-msop9ep45u2u@98hapqmngv8d84qdc8k-apps.googleusercontent.com”,
"sub": "1104634521",
-7 "nonce":
"iat": 1682002642,
"exp": 1682002642,
_Jtl"' "080072803ffd5d81ecfd@eaSld0d33d8032b83@"

"email": "test@soundness. xyz“ !

Inject a fresh public key into JWT!

Puﬂoad

{
‘= "iss": "https://accounts-google.com",
"azp": "http://575519204237-msop9ep45u2u@98hapqmngv8d84qdc8k-apps.googleusercontent.com",

N "aud": "http://575519204237-msop9ep45u2u@98hapqmngv8d84qdc8k-apps.googleusercontent.com”,
"sub": "1104634521",

-7 "nonce": "epk| |expiration",
"iat“: 1682002642,
exp : 1682002642,

We have a DIGITAL CERT over our fresh key + expiration ‘

zkLogin tricks:

we could ask

for email too

Address Payload
{
: "iss": "https://accounts-google.com",
= m - S "azp": "http://575519204237-msop9ep45u2u@98hapqmngv8d84qdc8k-apps.googleusercontent.com",
) - S "aud": "http://575519204237-msop9ep45u2u@98hapqmngv8d84qdc8k-apps.googleusercontent.com”,
Blake2b256(IDP | |Poseidon(IDC| |UserID] |I) > NI,
—_ P nonce": "epk||expiration",
s e "iat": 1682002642,
T "exp": 1682002642,
_"jti": "a8a0728a3ffd5d8lecfd@ea81d0d33d803eb830",
| "email": ™ Ee—st-@goan—dﬁe-ss_.;<yz“ﬂ)I

How to ensure users’ privacy?

Blake2b256 (IDP | |[Poseidon(IDC| |UserID|

Address

How to hide the JWT?
SNARKSs to the rescue!

Goal: Prove you have a valid JWT + you know the salt + you injected the
ephemeral key into JIWT

Verify JWT’s signature using

Verify the IS injected into the JWT’s nonce

Verify that the address is derived correctly from the JWT’s userlD, walletlD,
providerID + user’s salt

Given a Puuic I:DP__.Pk and szogIn address:
I have access to a valid under IDP,_Plc such that:

szogin__,ao(o{ = Blake2b256 |Poseidon(| @Poseja‘on())) &
Signature on tnx details is valid under epk that is linked to IJWT.

zkLogin in one slide: e2e

User enters the credentials

) A
)

— = orde

who has Login

access

to IDP

@ App/Browser initiates authorization grant
request by redirecting the user to IDP

—)

Get Salt @ Generate ZKP

Front-End
(APP/ Web Browser)

@ zk-proof + signat& Sui Blockchain

K@ State Upo(a‘te

Who maintains the salt?

- Client-side on-device management
Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a “salt service”
Each wallet can maintain their own service/delegate it
Privacy models: Store salt either in TEE/MPC/plaintext
Auth policies to the service: Either JWT or 2FA

ozdh

Circuit details

- Implemented in Circom DSL: 1M R1CS constraints
- We chose Groth16 due to its small proofs + rich ecosystem + fast prover
- Key operations
SHA-2 (66%)
RSA signature verification (14%) using tricks from [KPS18]
JSON parsing, Poseidon hashing, Base64, extra rules (20%)
- Prover based on rapidsnark

C++ and Assembly based

G)/:tiplication gate

zkLogin latency

Salt service on AWS Nitro
enclave (m5.xlarge10: 4
vCPUs, 16GB RAM)

="

ZKP generation on Google
Cloud (n2d-standard-16: 16
vCPUs, 64GB RAM).

Operation

zkLogin

Ed25519

Fetch salt from salt service
Fetch ZKP from ZK service

Signature verification

0.2s
2.78 s
2.04 ms

NA
NA
56.3 us

E2E transaction confirmation

3.52 s

120.74 ms

zkLogin trade-offs

Prover sees JWT; risks
unlinkability between web2 and
web3 identities.

Time-consuming on most
devices, but proofs can be
cached.

Is zkLogin really Non-Custodial?

App can break
unlinkability, posing
potential risks.

-

. . Users manage an

additional secret, which
is less sensitive than a
The option of multi-sig option: mnemonic. |

Involve more IDPs instead of one

zkLogin

® Sui

Welcome to Sui Wallet

Google
Facebook
Twitch
Apple
=% Slack
IH Microsoft

native authenticator
non-custodial

*discoverable, claimable
invisible wallets
semi-portable, 2FA

JWT beyond zkLogin

Some complementary ideas

SP1 verifier on Sui

A
3
Combine Sui's
infrastructure with

| ll SP1's zkVM

Sui Blockchain:
Scalable, user-friendly
decentralized solutions

SP1 zkVM: An easy
tool to develop

zkAiis in Rust

JWT beyond zkLogin

Some complementary ideas

Given a Pubhc IDP,_Pk and szog'm address:
I have access to a valid JWT under IDP_pk such that:
szog‘m,_aoH = Bloke2b256(i<<||Poseidon(aud||sub||Poseidon(Salt))) &
Signature on tnx details is valid under epk that is linked to IJWT.

szogin

Given a Pubhc @dowmain:
I have access to a valid IW T such that:

New c
€ ase Pay[oaol.ew\ail = test@olo.main.xyz

Given zkl.ogin,_ao(o(and @dowain:
P . l I have access to a valid IWT such that:
otentia zk[.og‘m_ao(ol = Bloke2b256(i<<||Poseidon(aud||sub|[Poseidon(Salt))) &

EXPQI’\S-IOV\ Payloaol.ew\a?l = 'tes‘t@O(OMain.XL/Z

Thank You!

Some of the slides done by Mysten labs team.

	Slide 1: zkLogin: Privacy-preserving blockchain authentication with existing credentials
	Slide 2: Mysten Labs and Sui:
	Slide 3: There are around 100 million active crypto wallets
	Slide 4: and there are several BILLIONS of web2 accounts
	Slide 5: Web3 has an onboarding problem
	Slide 6: Web3 has an onboarding problem
	Slide 7: Web3 has an onboarding problem
	Slide 8: Web3 has an onboarding problem
	Slide 9: Web3 has an onboarding problem
	Slide 10
	Slide 11: Can we make it as easy as signing in with Google, Facebook and co?
	Slide 12
	Slide 13: OpenID Connect (an extension of OAuth 2.0)
	Slide 14: JWT: JSON Web Token
	Slide 15: A Google-issued JWT (decoded)
	Slide 16: Inject a fresh public key into JWT!
	Slide 17: zkLogin tricks:
	Slide 18: How to ensure users’ privacy?
	Slide 19: How to hide the JWT? SNARKs to the rescue!
	Slide 20: zkLogin in one slide: e2e
	Slide 21: Who maintains the salt?
	Slide 22: Circuit details
	Slide 23: zkLogin latency
	Slide 24: zkLogin trade-offs
	Slide 25: zkLogin
	Slide 26: JWT beyond zkLogin Some complementary ideas
	Slide 27: JWT beyond zkLogin Some complementary ideas
	Slide 28

