lirreducible

Source: ZK Podcast

https://delphinuslab.com/

oF Bl in 2024

» dark forest

lirreducible

Source: ZK Podcast

https://delphinuslab.com/

##e MystenLabs QSui

Soundness Labs

zkLogin: Onboarding the next
billion users to web3

Mahdi Sedaghat

Jointly with Foteini Baldimitsi | Kostas Chalkias | Yan Ji | Jonas Lindstrgm | Deepak Maram | Ben Riva |
Arnab Roy | Joy Wang

To Appear at ACM CCS’24. Presented at SBC'24.

There are around

100 million

active crypto wallets

and there are several

BILLIONS

of web2 accounts

® METAMASK

MNew to MetaMask?

M, | alrgady have g seed phrose Yas, bet's got se

B

B METAMASK

M, | already honee

METAMASK

Access your wallet with your
Secret Recovery Phrase

Type your Secret Recovery
Phrase

¥ METAMASK

B METAMASK

Confirm your Secret Backup Phrase

M, | already have a seed

B METAMASK

M, | already have a seed

B METAMASK

Bridge tokens
Contf

Show more
From this network

Ethereum

You send

To this network

@ Polygon

You receive

4 WETH 0.010002

Verified on 4 sources. You can confirm the token oddress
on PolygonScan. @

B METAMASK

M, | already have a seed

opensea

10

To this network

@ Polygon

You receive
4 WETH 0.010002

Verified on 4 sources. You can confirm the token oddress
on PolygonScan. @

Mnemonics and keys are not going
to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is ac_

Can we make it as easy as S|gn|ng In
with Google, Facebook and co?

® People don’t want to use separate
passwords for each and every app,
each and every web2 service

e Extremely likely they already have a
Google, Facebook, Amazon account

® Solution: use OAuth to leverage these
already existing accounts

zkLogin:
OAuth + Zero Knowledge Proof

Non-custodial
User-friendly
Privacy-preserving

foauth2/v2 Ofauthorize Web

Browser Server

User nav

Redirects id_token to Redirect URI

Returns secure page to user

JWT as an alternative to a
private key?

Decoded

HEADER

WERIFY SIGMATURE

H

A Google-issued JWT

{ (decoded)
“alg": "RS256", { signin with Google
"kid": "96971808796829a972e79a9d1a9fff11lcd6lblel",
“typ“: llJl.lrl'll

H

q{
"iss": "https://accounts.google.com",
"azp": "575519204237-msop9ep45u2u098hapgmngv8d84qdc8k.apps.googleusercontent.com",
"aud": "575519204237—msop9ep45u2u098hapqmngv8d84qdc8k apps.googleusercontent.com",
"sub": "1104634521
"nonce": "1663791881390806026187052890399403872166979961386360161667815 : 89477",
"iat": 1682002642,
“exp": 1682006242, you can ask for email
"jti": "aB8a®728a3ffd5dc8lecfd@ea8ld0d33d803eb830" and other personal info

we could ask
for email too

m''
>« COM

"iss": "https ,
2u098hapqmng icBK.apps.

nazpn: "E75¢E
“aUd":

“sub": "11 21
"nonce": 313¢)60 2 370528903994038721¢
"iat":
uexpn:
"jti":

googleuse

S5u2u098hapgmngv8d84qdc8k. apps.googleuse

o9

31lecfdOea8ldOd33d803eb830"

~hash(providerID + zkhash(walletID + userID + zkhash(salt)))

add salt

inject eph key

- Implemented in circom: “1M R1CS constraints
- Key operations

SHA-2 (66%)

RSA signature verification (14%) using tricks from

[KPS18]

JSON parsing, Poseidon hashing, Base64, extra rules

(20%)

- Prover based on rapidsnark

#/e MystenLabs QSui

Soundness Labs

Q&A
ZK for authentication

How to SNARK sign-in with Google, Apple & FB

Sui docs Demo

R
E ul I".I':;!E" g
P

Contact: mahdi@soundness.xyz Slides credited to Mysten Labs crypto team.

https://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Backup slides

Naive solution: OAuth + Custodian

——Can wé\a<void the trusted

custodian?
) r\\

zkLogin goodies

Native auth, cheap

Not via smart contracts,
same gas cost as regular

sig verification.

ID-based wallets

Create email or phone

number based accounts.

Can also reveal identity of
an existing account (e.g.,
email) fully or partially
(e.g., reveal a suffix like

@xyz.edu)

Embedded wallet

Mobile apps or websites
can natively integrate
zkLogin without the need

for a wallet popup!

2FA

Can do a 2-out-of-3
between Google, Facebook
and Apple. Salt can also

serve as a second factor.

hash(providerID + zkhash(walletID + userID + zkhash(salt)))

Hard to lose!

Thanks to robust recovery
paths of Google,

Facebook.

+ ZK

proof

G Google
$ Facebook
Twitch

& Apple
=% Slack
. Microsoft

native authenticator
non-custodial

*discoverable, claimable
invisible wallets
semi-portable, 2FA

http://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Challenge 1: How to authorize a tx with a JWT?

{
"alg": "RS256",
"kid": "96971808796829a972e79a9d1a9fffllcd6lblel3”,
“typ": "IWT"
hj
{
"iss": "https://accounts.google.com",

"azp": "575519204237-msop9ep45u2uo98hapgmngv8d84qdc8k.apps.googleusercontent.com",
"aud": "575519204237—m5009ep45u2u098hapqmngv8d84qdc8k apps.googleusercontent.com",
"sub": "1104634521

"nonce": “166379188139080602618705289@39940387216697996138@3601616678155512181273289477“
"iat": 1682002642,

"exp": 1682006242,

"jti": "aBa0728a3ffd5dc8lecfd@ea81d0d33d803eb830"

#/s MystenLabs

Inject a fresh pub key into JWT!

{

"alg": "RS256",

"kid": "96971808796829a972e79a9d1a9fff1llcdblble3”, .

"typ": "IWT" replace nonce with
}| user provided data:
{ ephemeral pub key +

) expiration
"iss": "https://accounts.google.com",

"azp": "575519204237-msop9ep45u2uo98hapgmngv8d84qdc8k. apz

"aud": "575519264237-m5009ep45u2u098hapqmngv8d84qdc8k.r

"sub": "1104634521
>"nonce": "16637918813908060261876528903994038721669799613803601616678155512181273289477"

"iat": 1682002642,

"exp": 1682006242,

"jti": "aB8a®728a3ffd5dc8lecfddea81d0d33d803eb830"

Pog Leusvreuncent. com”,
P> .g00gleusercontent.com",

b

W& haye.2 DIGITAL CERT over our fresh key + expiration g_g

Challenge 2: How to identify the user withoyk
linking identities?

we could ask

“iss": "https://accounts.google.com", fOI' email too
“"azp": "575519 37-ms 2u098hapgmngv8d84qdc8k. apps.
“aud": "5 204237-mson9 131,1.2L,09£.hapqrunqvm 84qdc8k.apps.googleusercontent.com"
“sub": 1 21 "

"nonce": y 7918813908060 7052090“”9 3872166979961380360161667815551218127328947

gleusercontent.com"

goo

"iat":
"exp 3 ,
"jti": "aBa0728a3ffd5dc8lecfddea8ld0d33d803eb830"

Add a persistent randomizer: salt

we could ask
"iss": "https://accounts.google.com", for email too
“azp": "575519204237-msop9epd45u2uo98hapqmngv8dB84qdc8k.apps.googleusercontent.com",
“aud": "575519204237-mson9epnd45u2u098hapgmngv8d84qdc8k.apps.googleusercontent.com",
"sub": "1104634521
"nonce": "16637918813908060261870528903994038721669799613803601616678155512181273289477",
"iat":)@
“exp": 168200 ;
"jti": "aBa0728a3ffd5dc8lecfddea8ld0d33d803eb830"

hash(providerID + walletID + userID + salt

Who maintains the salt?

- Client-side on-device management
- Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a “salt service”
- Each wallet can maintain their own service / delegate it
- Privacy models: Store salt either in TEE / MPC / plaintext
- Auth policies to the service: Either JWT or 2FA

hash(providerID + walletID + userID + salt

Challenge 3: How to hide the JWT?
SNARKS to the rescue!

we could ask
for email too

"iss": "https://accounts.google.com",

“"azp": "575519204237-msop9ep45u2uo98hapqmngv8d84qdc8k.apps.googleusercontent.com”,
"aud": "575519204237-mson9end45u2u098hapgmngv8d84qdc8k.apps.googleusercontent.com",
"“sub": "1104634521 ”

"nonce": "16637918813908060261870528903994038721669799613803601616678155512181273289477",
"iat": 1€ 42,

"exp": 168: 42,

LY 28a3ffd5dc8lecfddea81d0d33d803eb830"

Goal: Prove you have a valid JWT + you know the salt + you injected the
ephemeral key into JWT

- Verify JWT’s signature using Google’s public key
- Verify the ephemeral public key is injected into the JWT’s nonce
- Verify that the address is derived correctly from the JWT's us alletll

providerID + user’s salt Yellow => private inputs
Blue => public inputs

Challenge 4: Prove + RTT in <3s

- We chose Groth16 due to its small proofs + rich ecosystem + fast prover
- But.. proofs are slow to generate on end-user devices
- Make _: Hand-optimized circuit that selectively parses relevant
parts of the JWT + string slicing tricks + ...

- _ to an untrusted ZKP service

- Open problem: How to delegate with privacy?

	Slide 1
	Slide 2
	Slide 3: zkLogin: Onboarding the next billion users to web3
	Slide 4: There are around 100 million active crypto wallets
	Slide 5: and there are several BILLIONS of web2 accounts
	Slide 6: Web3 has an onboarding problem
	Slide 7: Web3 has an onboarding problem
	Slide 8: Web3 has an onboarding problem
	Slide 9: Web3 has an onboarding problem
	Slide 10: Web3 has an onboarding problem
	Slide 11
	Slide 12: Can we make it as easy as signing in with Google, Facebook and co?
	Slide 13
	Slide 14: OpenID Connect (an extension of OAuth 2.0)
	Slide 15: JWT: JSON Web Token
	Slide 16: A Google-issued JWT (decoded)
	Slide 17: zkLogin tricks
	Slide 18: Circuit details
	Slide 19: zkLogin latency
	Slide 20: ZK for authentication How to SNARK sign-in with Google, Apple & FB
	Slide 21: Backup slides
	Slide 22: Naive solution: OAuth + Custodian
	Slide 23: Can we avoid the trusted custodian?
	Slide 24
	Slide 25
	Slide 26: zkLogin
	Slide 27: Challenge 1: How to authorize a tx with a JWT?
	Slide 28: Inject a fresh pub key into JWT!
	Slide 29: Challenge 2: How to identify the user without linking identities?
	Slide 30: Add a persistent randomizer: salt
	Slide 31: Who maintains the salt?
	Slide 32: Challenge 3: How to hide the JWT? SNARKs to the rescue!
	Slide 33: Challenge 4: Prove + RTT in <3s

