
MAP OF ZK in 2024
R&D/AuditPayments

Aptos Keyless

ZORDLE

zkLogin

L1s

Hardware

L2s

DeFi

ZK in BTC

Cross-chain

ZKML/AI

Gaming

ID/Wallets

Coprocessor

Verifiable

Compute

ZKTLS

Prover Network

Proof Verif.

Misc/Tools
Nouns DAO
Anonymous DAO

Delphinus Lab

Source: ZK Podcast

Soundness

Layer

https://delphinuslab.com/

MAP OF ZK in 2024
R&D/AuditPayments

Aptos Keyless

ZORDLE

zkLogin

L1s

Hardware

L2s

DeFi

ZK in BTC

Cross-chain

ZKML/AI

Gaming

ID/Wallets

Coprocessor

Verifiable

Compute

ZKTLS

Prover Network

Proof Verif.

Misc/Tools
Nouns DAO
Anonymous DAO

Delphinus Lab

Source: ZK Podcast

Soundness

Layer

zkLogin

https://delphinuslab.com/

zkLogin: Onboarding the next
billion users to web3

Jointly with Foteini Baldimitsi | Kostas Chalkias | Yan Ji | Jonas Lindstrøm | Deepak Maram | Ben Riva |

Arnab Roy | Joy Wang

Foundations and Applications of Zero-Knowledge Proofs, Edinburgh, UK

Mahdi Sedaghat

Soundness Labs

To Appear at ACM CCS’24. Presented at SBC’24.

There are around

100 million
active crypto wallets

and there are several

BILLIONS
of web2 accounts

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Web3 has an onboarding problem

Mnemonics and keys are not going
to get us mass adoption.

Complexity is the killer of adoption.

The ultimate killer dApp for blockchain, is accessibility.

Can we make it as easy as signing in

with Google, Facebook and co?

● People don’t want to use separate

passwords for each and every app,

each and every web2 service

● Extremely likely they already have a

Google, Facebook, Amazon account

● Solution: use OAuth to leverage these

already existing accounts

ht tps:/ /cdn.vox-

cdn.com/ thum bor/ncbDuMeGzbUI6Ve0w6npZnclPSQ=/0x0:1125x2184/2000x1333/f ilters: focal(574x1530:575x1531)/cdn.vo

x-cdn.com/uploads/chorus_asset/ fil e/22756604/ IM G_2175.jpeg

zkLogin:
OAuth + Zero Knowledge Proof

Non-custodial

User-friendly

Privacy-preserving

OpenID Connect (an extension of OAuth 2.0)

JWT: JSON Web Token
Base64-encoded, RSA-signed

JWT as an alternative to a
private key?

A Google-issued JWT
(decoded)

you can ask for email
and other personal info

zkLogin tricks
sample openID JWT token

signed by Google / FB

aud = walletID

sub = userID

we could ask
for email too

nonce = eph.

pubKey
+ expiration

add salt

inject eph key

+

+ ZK
proof

=
ADDRESS

~hash(providerID + zkhash(walletID + userID + zkhash(salt)))

&

verify ZKproof verify eph key sig+

Circuit details

- Implemented in circom: ~1M R1CS constraints

- Key operations

- SHA-2 (66%)

- RSA signature verification (14%) using tricks from

[KPS18]

- JSON parsing, Poseidon hashing, Base64, extra rules

(20%)

- Prover based on rapidsnark

- C++ and Assembly based

zkLogin latency

Latency for most zkLogin transactions
is very similar to traditional ones!

These numbers correspond
only to the first transaction

of a session

Q & A
ZK for authentication
How to SNARK sign-in with Google, Apple & FB

Paper

Contact: mahdi@soundness.xyz

Sui docs Demo

Soundness Labs

Slides credited to Mysten Labs crypto team.

https://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Backup slides

21

Naive solution: OAuth + Custodian

Can we avoid the trusted
custodian?

zkLogin goodies

Embedded wallet

Mobile apps or websites

can natively integrate

zkLogin without the need

for a wallet popup!

2FA

Can do a 2-out-of-3

between Google, Facebook

and Apple. Salt can also

serve as a second factor.

Hard to lose!

Thanks to robust recovery

paths of Google,

Facebook.

ADDRESS
hash(providerID + zkhash(walletID + userID + zkhash(salt))) + ZK

proof

Native auth, cheap

Not via smart contracts,

same gas cost as regular

sig verification.

ID-based wallets

Create email or phone

number based accounts.

Can also reveal identity of

an existing account (e.g.,

email) fully or partially

(e.g., reveal a suffix like

@xyz.edu)

zkLogin

Google
Facebook
Twitch

native authenticator

non-custodial
*discoverable, claimable
invisible wallets
semi-portable, 2FA

single-click accounts w/

Apple

zklogin_video.mov

Slack

Microsoft

http://drive.google.com/file/d/106h5Gn92XYznpyzsgw_2ruaCq4nypNiT/view

Challenge 1: How to authorize a tx with a JWT?

Inject a fresh pub key into JWT!

replace nonce with
user provided data:

ephemeral pub key +
expiration

We have a DIGITAL CERT over our fresh key + expiration

Challenge 2: How to identify the user without
linking identities?

aud = walletID

sub = userID

we could ask
for email too

ADDRESS
???

Add a persistent randomizer: salt
aud = walletID

sub = userID

we could ask
for email too

ADDRESS
hash(providerID + walletID + userID + salt)

Salt: A persistent per-user
secret for unlinkability

Who maintains the salt?

ADDRESS
hash(providerID + walletID + userID + salt)

- Client-side on-device management
- Edge cases, e.g., cross-device sync, device loss need handling

- Server-side management by a “salt service”
- Each wallet can maintain their own service / delegate it

- Privacy models: Store salt either in TEE / MPC / plaintext

- Auth policies to the service: Either JWT or 2FA

Salt: A persistent per-user
secret for unlinkability

Challenge 3: How to hide the JWT?
SNARKs to the rescue!

aud = walletID

sub = userID

we could ask
for email too

nonce = eph.

pubKey
+ expiration

Goal: Prove you have a valid JWT + you know the salt + you injected the

ephemeral key into JWT

- Verify JWT’s signature using Google’s public key

- Verify the ephemeral public key is injected into the JWT’s nonce

- Verify that the address is derived correctly from the JWT’s userID, walletID,

providerID + user’s salt Yellow => private inputs

Blue => public inputs

Challenge 4: Prove + RTT in <3s

- We chose Groth16 due to its small proofs + rich ecosystem + fast prover

- But.. proofs are slow to generate on end-user devices

- Make ZKP efficient: Hand-optimized circuit that selectively parses relevant

parts of the JWT + string slicing tricks + …

- Delegate proving to an untrusted ZKP service

- Open problem: How to delegate with privacy?

	Slide 1
	Slide 2
	Slide 3: zkLogin: Onboarding the next billion users to web3
	Slide 4: There are around 100 million active crypto wallets
	Slide 5: and there are several BILLIONS of web2 accounts
	Slide 6: Web3 has an onboarding problem
	Slide 7: Web3 has an onboarding problem
	Slide 8: Web3 has an onboarding problem
	Slide 9: Web3 has an onboarding problem
	Slide 10: Web3 has an onboarding problem
	Slide 11
	Slide 12: Can we make it as easy as signing in with Google, Facebook and co?
	Slide 13
	Slide 14: OpenID Connect (an extension of OAuth 2.0)
	Slide 15: JWT: JSON Web Token
	Slide 16: A Google-issued JWT (decoded)
	Slide 17: zkLogin tricks
	Slide 18: Circuit details
	Slide 19: zkLogin latency
	Slide 20: ZK for authentication How to SNARK sign-in with Google, Apple & FB
	Slide 21: Backup slides
	Slide 22: Naive solution: OAuth + Custodian
	Slide 23: Can we avoid the trusted custodian?
	Slide 24
	Slide 25
	Slide 26: zkLogin
	Slide 27: Challenge 1: How to authorize a tx with a JWT?
	Slide 28: Inject a fresh pub key into JWT!
	Slide 29: Challenge 2: How to identify the user without linking identities?
	Slide 30: Add a persistent randomizer: salt
	Slide 31: Who maintains the salt?
	Slide 32: Challenge 3: How to hide the JWT? SNARKs to the rescue!
	Slide 33: Challenge 4: Prove + RTT in <3s

